摘要
                
                    本文证明了拟常曲率空间中紧致极小子流形是全测地的关于Ricci曲率的Pinch-ing条件,推广和包含了常曲率空间中Ejiri的相应结果,即Q>n-2(n>4)时,M=S^n(1)。
                
                We have proued the following theorem. Theorem: Let M be a co-mpact minimal Submanifold in a Riemann manifold of quasi constant curvatu-re V^(n+p). if Ricci curvature Q of M satisfy Q>(n-2)a-(2n+1/n-4 b+1/2(δ+2n+1/n-4)(b+|b|)here n>4,δ=max{3n^2-10n+8/n(n-4),n-1} then, M=S^n(1).
    
    
    
    
                出处
                
                    《宁夏大学学报(自然科学版)》
                        
                                CAS
                        
                    
                        1993年第2期15-23,共9页
                    
                
                    Journal of Ningxia University(Natural Science Edition)
     
    
                关键词
                    子流形
                    全测地
                    拟常曲率空间
                
                        submanifold
                         Ricci curvature
                         total geodesic
                         quasi curvature.