期刊文献+

捕捉间断的高精度数值方法 被引量:5

Study of higher order accuracy algorithm of capturing discontinuity
在线阅读 下载PDF
导出
摘要 为发展适用于捕捉超声速流场中各种间断的高精度算法,将通量限制的思想引入到紧致格式中,构造了一个传统方法与紧致格式混合组成的通量限制型差分格式。通过在时间方向上利用一阶精度格式计算的一维定常激波,以及在时间方向采用多步Runge-Kutta方法计算的一维非定常激波管问题上的数值试验与二阶精度的TVD格式所计算的结果比较,表明新方法比二阶精度方法在间断的捕捉上具有明显的优势。通过新方法的计算结果与精确解的比较,表明新方法的准度也是非常令人满意的。 For developing a higher order accuracy algorithm applying to capturing various discontinuities in supersonic flow, in the process of constructing compact finite difference scheme, the ideal of fluxes limited is utilized. A new scheme mixed with classical scheme and compact scheme is presented. A first-order accuracy scheme for temporal discretization is used to compute one dimension steady shock and a multistage Runge-Kutta time stepping scheme is used to solve Sod problem. The present results were compared with those results computed by the 2nd-order TVD scheme. It showed that the new scheme provides a significant improvement over the 2nd-order TVD scheme in capturing shock. The present results are in good agreement with accurate solutions.
出处 《空气动力学学报》 EI CSCD 北大核心 2004年第3期269-273,共5页 Acta Aerodynamica Sinica
基金 国家自然科学基金资助项目(10172015) 国家重大研究计划资助项目(90205010).
关键词 间断 二阶精度 一维 紧致格式 激波管 精确解 数值方法 TVD格式 超声速流 非定常 Numerical methods Runge Kutta methods Supersonic aerodynamics Wind tunnels
  • 相关文献

参考文献4

  • 1LELE S K. Compact finite difference schemes with spectrai-like resolution [J]. J.Comput.Phys.,1992,1103:16-42.
  • 2HARTEN A. High resolution schemes for conservation laws [J]. J. Comp. Phys.1983,49:357-393.
  • 3HARTEN A & OSHER S. Uniformly high-order accurate non-oscillatory schemes I [J]. SIAM J.Numer Anal.,1987,24:279-309.
  • 4RAVICHANDRAN K S. Higher order KFVS algorithms using compact upwind difference operators. J. Comp. Phys.1983,49:357-393.

同被引文献42

引证文献5

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部