1Lions L J. Optimal Control of Systems Govemed by Partial Differential Equations. New York: Sringer Verlag, 1971. 100-118, 272 -295
2Le Dimet, et al. Variational algorithms for analysis and assimilation of meteorological observations. Theoretical Aspect Tellus, 1986,38A: 97
3Talagrant, et al. Variational assimilation of meteorological observations with the adjoint vorticity equation, Part Ⅰ. Theory Quart J Roy Meter Soc, 1987, 113:1311
4Morozov V A. Choice of parameter for the solution of functional equations by the regularization method. Soy Math Doklady, 1967,8: 1000
5Tikhonov A N, et al. Solutions of Ill-Posed Problems. Washington,V H Winston & Sons, 1977
6Kirsch A. An Introduction to the Mathematical Theory of Inverse Problems. New York: Springer-Verlag, 1996. 23-45, 48-53
7Huang S X, et al. Application of Regularization Ideas in Ill-Posed Problems of Ocean Variational Data Assimilation with Local Observation. Shanghai. Shanghai University Press, 2002. 840-844
8Chow C Y. An Introduction to Computational Fluid Mechanics.New York: Chichester, Brisbane, Toronto, Colorado University Press, 1989. 1-62
9Fraiture L. The information dilution theory. ESA J, 1986, 10:381
2Zou X, Navon I M, LeDimet F X. An optimal nudging data assimilation scheme using parameter estimation. Q J R Meteor Soc, 1992, 118:1163-1186.
3Wang A, Navon I M, Zou X, et al. A truncated Newton optimization algorithm in meteorology applications with analytic Hessian/vector products. Computational Optimization and Applications, 1995, 4:241-262.
4Stauffer D R, Bao J. Optimal determination of nudging coefficients using the adjoint equations. Tellus, 1993, 45A: 358-369.
5Wergen W. The effect of model errors in variational assimilation. Tellus, 1992, 44A: 297-313.
6Panchang V G,O'Brien J J. On the determination of hydraulic model parameters using the strong constraint formulation. In:Daviers A M, ed. Modeling Marine Systems. CRC Press Inc, 1989. 5-18.
7Smedstad O M, O'Brien J J. Variational data assimilation and parameter estimation in an equatorial Pacific Ocean model.Progress in Oceanography, 1991, 26:179-241.
8Yu L, O'Brien J J. Variational estimation of the wind stress drag coefficient and the oceanic eddy viscosity profile. J Physical Oceanography, 1991, 21 : 709-719.
9Eknes M, Evensen G. Parameter estimation solving a weak constraint variational formulation for an Ekman model. J Geophys Res, 1997, 102(c6): 12479-12491.
10Navon I M. Practical and theoretical aspects of adjoint parameter estimation and identifiablity in meteorology and oceanography. Dyn Atmos Oceans, 1997, 27:55-79.