期刊文献+

基于高层语义的图像检索算法 被引量:20

Algorithms of High-Level Semantic-Based Image Retrieval
在线阅读 下载PDF
导出
摘要 利用Bayes统计学习和决策理论,建立了一种图像语义综合概率描述模型(image probability semantic model,简称IPSM).该模型是一种基于描述性特征建模方法的分层体系结构,由原始图像层、图像特征层、图像语义层、综合概率层、概率传播层和语义映射层6个部分组成.并在IPSM模型对图像的语义分类特征进行描述和提取的基础上,提出并实现了基于高层语义的图像检索算法(semantic high-level retrieval algorithm,简称SHM)以及基于高层语义的相关反馈算法(semantic relevance feedback,简称SRF).实验结果表明,IPSM模型及SHR和SRF两个算法能够有效地对图像的高层语义进行刻画,其图像匹配检索效果良好,并具有稳定的检索性能. IPSM is an integrated probabilistic image semantic description multi-level model. This model includes input layer, feature layer, semantic layer, synthetical probability layer, probability propagation layer, and semantic mapping layer. Based on the model and characterizing of the image high-level semantic content according to Bayesian theory, SHM (semantic high-level retrieval algorithm) and SRF (high-level semantic relevance feedback algorithm) for image retrieval based on high-level semantic content, for user relevance feedback respectively, are designed and implemented. Experimental results indicate that IPSM, SHM and SRF are effective in characterizing image high-level semantic content and can provide sound and robust image retrieval performance.
出处 《软件学报》 EI CSCD 北大核心 2004年第10期1461-1469,共9页 Journal of Software
基金 江苏省自然科学基金~~
关键词 SHM 特征提取 Bayes统计学习 语义分类辞典 相关反馈 Algorithms Computational complexity Content based retrieval Feature extraction Mathematical models Probability Semantics Statistical methods Thesauri
  • 相关文献

参考文献1

二级参考文献5

  • 1[1]Cox IJ, Minka TP, Papathomas TV, Yianilos PN. The Bayesian image retrieval system, PicHunter: theory, implementation, and psychophysical experiments. IEEE Transactions on Image Processing, 2000,9(1):20~37.
  • 2[2]Diamantaras I, Kung, SY. Principal Component Neural Networks, Theory and Applications. New York: John Wiley & Sons, Inc., 1996.
  • 3[3]Rui Y, Huang TS. A novel relevance feedback technique in image retrieval. In: Proceedings of the 7th ACM International Conference (Part 2) on Multimedia (Part 2). Orlando: ACM Press, 1999. 67~70.
  • 4[4]Su Z, Li S, Zhang H. Extraction of feature subspaces for content-based retrieval using relevance feedback. In: Proceedings of the 9th ACM Multimedia Conference. Orlando: ACM Press, 2001. 98~106.
  • 5[5]Vasconcelos N, Lippman A. Learning from user feedback in image retrieval systems. In: Proceedings of the NIPS'99. 1999. http://www.media.mit.edu/people/nuno/publications.html.

共引文献4

同被引文献261

引证文献20

二级引证文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部