期刊文献+

基于双正交小波变换在灰度图像压缩中的应用 被引量:3

Application of Biorthogonal Wavelet Transform Based on Grayscale Images Compression
在线阅读 下载PDF
导出
摘要 小波变换是数学领域的一个新数学的分支 ,他在图像领域得到了广泛的应用。本文首先介绍了小波变换的基本原理 ,然后采用双正交小波对图像进行压缩 。 Wavelet transformation is the branch of new mathematics which has been widely used in the field of imaging procession This paper introduces the basic theory of wavelet transformation firstly, then uses biorthogonal wavelet to compress it At last, we analyze the result
机构地区 西安理工大学
出处 《现代电子技术》 2004年第21期84-86,共3页 Modern Electronics Technique
关键词 小波变换 双正交小波变换 灰度图像压缩 哈夫曼编码 wavelet transformation biorthogonal wavelet image compression Huffman encoding
  • 相关文献

参考文献3

二级参考文献9

  • 1Meyer Y著 王耀东译.小波与算子(第一、二卷)[M].北京:世界图书出版公司,1994..
  • 2[1]W Sweldens. The Lifting Scheme: A Custom-design Construction of Bi-orthogonal Wavelets[J]. Appl. Comput, Harmon Anal,1996,3(2):186~200.
  • 3[2]H Kim CC, Li. Lossless and Lossy Image Compression Using Bi-orthogonal Wavelets with Multipierless Operations[J]. IEEE Trans. Lcrcuit and System Ⅱ: Analog and Digital Signal Prolesing,1998,48(8):1117~1118.
  • 4[3]R Claypoole, R Baraniuk, R Nowak. Lifting for Nonlinear Wavelet Image Processing[J]. SPIE,3813:372~383.
  • 5[4]NV Boulgouris, D Tzovras, MG Strinnzis. Lossless Image Compression Based on Optimal Prediction, Adaptive Lifting and Conditional Arithmetic Coding[J]. IEEE, Trans, Image Processing,2001,10(1):1~14.
  • 6[5]A Cohen, I Daubechies, J Feauveau. Bi-orthogonal Bases of Compactly Supported Wavelets[J]. Comm. Pure Appl. Math,1992,45:485~560.
  • 7[6]M Antonino, M Barlaud, P Mathien, et al. Image Coding Using Wavelet Transform[J]. IEEE, Trans, Image Procesing,1992,1(4):205~220.
  • 8[7]A Said, WA Pearlman. A New Fast and Efficient Image Coding Based on Set Partitioning in Hierarchical Trees[J]. IEEE Trans Circuits System: Video Technology,1996,6(3):243~250.
  • 9钟广军,成礼智,陈火旺.各类离散W变换的快速Hartley变换算法[J].电子学报,2001,29(2):190-191. 被引量:2

共引文献9

同被引文献14

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部