期刊文献+

基于BP人工神经网络的GPS/SINS组合导航算法 被引量:1

Integrated GPS/SINS navigation algorithm based on the artificial neural network BP
在线阅读 下载PDF
导出
摘要 基于扩展Kalman滤波的GPS/SINS组合导航算法,需要对原始的非线性连续系统模型进行线性化和离散化处理,要求系统噪声和测量噪声为零均值的高斯白噪声,且易于出现滤波器发散。BP人工神经网络无需对所求解的问题建模,能够很好地逼近系统非线性特性,获得较高精度的导航定位信息;还具有计算过程稳定,不涉及矩阵求逆,不需要迭代逼近,以及容易实现并行处理等优点。设计适用于GPS/SINS组合导航系统的BP网络模型,并在标准的BP算法基础上,采用共轭梯度法改进网络训练速度及精度。最后,通过仿真算例说明BP网络方法用于GPS/SINS组合导航计算的可行性。 The integrated GPS/SINS navigation algorithm based on extended Kalman filtering requires that the original non-linear and continuous system models have to be made linearization and discretization, and that the system noises and measurement ones have to be the white ones with zero-mean. Hence the filter is liable to get divergence in practice. The artificial neural network, Back-Propagation network (BP), needn′t establish the system model to solve problem, can approximate well to the non-linear system features and obtain high-accurate navigation and positioning solutions. Moreover, the BP network still has a lot of advantages. For instance, its competing procedure is very stable, it isn′t concerned to the inverse matrix solution and the iterative approximation calculation, it is easy to make parallel data processing for the BP network, and so on. Therefore, the BP network structure applied to the integrated GPS/SINS navigation system will be designed. On the basis of the standard BP algorithm, meanwhile, the conjugate gradient algorithm is used to improve the velocity and accuracy of training BP network. The feasibility of the BP network method applied to the integrated GPS/SINS navigation calculation can be illustrated from a simulation example.
出处 《现代防御技术》 2004年第5期43-48,共6页 Modern Defence Technology
关键词 人工神经元网络 GPS SINS 组合导航算法 仿真算例 Artificial neural network GPS/SINS Integrated navigation algorithm Simulation example
  • 相关文献

参考文献6

  • 1Boutayed M,Rafaralahy H,Darouach M.Convergence analysis of the extended Kalman filter used as an observer for nonlinear deterministic discrete-time systems [J]. IEEE Transactions on Automatic Control, 1997,42: 581-586.
  • 2Vik B,Fossen T I.A nonlinear observer for integration of GPS and INS attitude [A].Proceedings of the 12 th International Technology Meeting of the Satellite Division of the Institute of Navigation[C].Nashville TN, Sept. 14~17, 1999.2027-2031.
  • 3Hecht-Nielsen R.Theory of the back-propagation neural networks [A]. Proceedings of the International Joint Conference on Neural Networks[C].Las Vegas, Nevada, 1989, I.593-611.
  • 4Haykin S.Neural Networks: A Comprehensive Foundation [M].IEEE Press, New York: Macmillan College Publishing Company, Inc., 1994.105-138.
  • 5Scherzinger B M,Reid D B.Modified strapdown inertial navigation error mode [A].Proceedings of IEEE Position Location and Navigation Symposium[C].Las Vegas, Nevada, April 11~15, 1994.426-430.
  • 6袁信 郑谔.捷联惯性导航原理[M].南京:航空工业出版社,1985.108-140.

共引文献1

同被引文献7

引证文献1

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部