期刊文献+

基于分层次细节模型的场景快速绘制 被引量:4

Fast Drawing Algorithm of Static and Dynamic Scene Based on HDM
在线阅读 下载PDF
导出
摘要 分层次细节模型(HDM)动静态场景快速绘制算法根据几何数据集,用场景图表示几何体,先计算局部场景图分层次细节(HLOD),并随场景中物体运动,更新与动态场景相对应的HDM。然后依据空间近似度,重新聚集场景图节点,最后增量更新场景图边界体层次。并将HLOD需重新计算的节点插入到队列,用简化处理方法计算HDM。以显示列表快速绘制LOD和HDM。 Fast drawing algorithm of static and dynamic scene based on hierarchical detail model (HDM) is that according to geometry data set, geometrical body is expressed with scene graph, and HLOD (hierarchical Levels of Details) of local scene graph is calculated. Refresh the corresponding HDM models according to the dynamic scene when the objects moves, and regroup the nodes according to their spatial proximity, then refresh the graph edge levels incrementally and insert the nodes in the queue for HDM to simplify. Finally, fast drawing LOD and HDM is displayed using display lists.
作者 雷伟杰 蔡勇
出处 《兵工自动化》 2004年第5期54-55,共2页 Ordnance Industry Automation
关键词 场景绘制 分层次细节模型 层次细节 分层次细节 Scene drawing HDM (Hierarchical detail model) LOD (Levels of Details) HLOD (Hierarchical LOD)
  • 相关文献

参考文献7

  • 1淮永建,郝重阳.基于LOD实时图形绘制和加速技术[J].中国图象图形学报(A辑),2002,7(1):97-102. 被引量:17
  • 2[2]Clark J.Hierarchical Geometric Modelsfor Visible Surface Algorithms [A].Communications of the ACM,1976.547-554.
  • 3[3]Manuel M.Relief Texture Mapping [A].Proceedings of SIGGRAPH,2000.156-161.
  • 4[4]WAGNER T.Towards Point-Based Acquisition and Rendering of Large Real-World Environments [A].Computer Graphics (SIGGRAPH 2000 Proceedings),2000.265-270.
  • 5[5]Hoppe H.View-Dependent Refinement of Progressive Meshes [A].Computer Graphics (SIGGRAPH 97 Proceedings),1997.189-198.
  • 6[6]Erikson C,Dinesh M.HLODs for Faster Display of Large Static and Dynamic Environments [A].Computer Graphics (SIGGRAPH 01 Proceedings),2001.113-117.
  • 7[7]Erikson C,Manocha D.GAPS: Generaland Automatic Polygonal Simplification [A].Symposium on Interactive 3D Graphics '99 Proceedings,1999.79-88.

二级参考文献31

  • 1Clark J, Hierarchical geometric modets for visibte surface algorithms [J], Communications of the ACM, 1976, 19 (10):547-554.
  • 2Cohen J, Wright W. Simplification envelopes [A]. In: Proceedings of SIGGRAPH'96 [C], Held in New Orleans, Louisiana, August 1996: 119-128.
  • 3Eck M, DeRose T, Duchamp T et al. Multiresolution analysis of arbitrary meshes. In: Proceedings of SIGGRAPH'95[C], Held in Los Angles, California, August 1995: 173-180.
  • 4Hoppe H. Progressive meshes [A]. In: Proceedings of SIGGRAPH'96 [C], Held in New Orleans, Louisiana, August 1996:99-108.
  • 5Algorri M E, Schmitt F. Mesh simplification [A]. In: Proceedings of EuroGraphics'96[C], 1996: 77-86.
  • 6Gueziec A. Surface simplification inside a tolerance volume[R], Technical Report RC 20440, IBM Research Division. T. J. Watson Research Center.
  • 7Eck M, DeRose T, Duchamp T et al. Multiresolution analysis of arbitrary meshes[A]. In: Proceedings of SIGGRAPH'95[C], Held in Angles, California, August 1995:173-182.
  • 8Turk G. Re-tiling polygonal surfaces [A]. In: Proceedings of SIGGRAPH'92 [C], Held in Chicago Illinois, July 1992:55-64.
  • 9Hoppe H, DeRose T, Duchamp T et al. Mesh optimization[A]. In: proceedings of SIGGRAPH'93[C], Held in Anaheim, California, August 1993:19-26.
  • 10Rossignac J, Borrel P. Multi-resolution 3D approximations for rendering complex scenes[J]. Geometric Modeling in Computer Graphics, 1993,5(2):455-465.

共引文献16

同被引文献36

引证文献4

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部