期刊文献+

混沌时间序列的优化预测模型及算法研究

Research on optimal prediction model and algorithm about chaotic time series
在线阅读 下载PDF
导出
摘要 针对混沌时间序列难以预测和控制问题,提出了基于趋势的混沌预测模型,利用混沌系统的初值、参数敏感性来微调和控制系统扰动,并用改进的最优化方法估计模型的参数,在其相空间中对时序未来值进行预测。算例表明,选取最佳的模型阶数能增加预测的准确程度,它不仅克服了仅用延迟嵌入技术的弊端,也降低了直接使用预测误差决定输入模式的盲目性。预测效果比其他时序方法要好。 Facing the of difficulty to estimate and control chaotic time series, a chaotic estimating model was suggested, where the initial value of the chaotic system and the sensitivity of the parameter are used to inching and control the disturbance of the system, and estimated the parameter of the model by using the best update option. The intending series value was forecasted is in its mutually space. The example shows the increase of the precision in the estimated process by selecting the best model steps. It not only conquer the deficiency of using detention inlay technology alone, but also decrease blindness of using forecast error to decide the input model directly. The prediction result is better than the method of statistics and other series means.
出处 《吉林大学学报(信息科学版)》 CAS 2004年第4期293-297,共5页 Journal of Jilin University(Information Science Edition)
基金 国家自然科学基金资助项目(60373062) 湖南省杰出中青年专家科技基金资助项目(02JJYB012) 教育部重点科研基金资助项目(02A056)
关键词 混沌时序 参数识别 优化预测模型 改进的变尺度法 chaotic time series parameter identification optimal prediction model improved change ruler method
  • 相关文献

参考文献12

  • 1OTT E, GREBOGI C, YORKE J A. Controlling chaos [J]. Physical Review Letters, 1990, 64 (11): 1 196-1 199.
  • 2TAKEN F. Detecting strange attractors in turbulence [C] // RAND D A, YOUNG L S. Dynamical Systems and Turbulence, Lecture Notes in Mathematics, Berlin: Springer-Verlag, 1980, 898: 366-381.
  • 3CAO LIANGYUE, HONG YIGUANG, FANG HAIPING, et al. Predicting chaotic time series with wavelet networks[J]. IEEE Proc E, 1998: 231-236.
  • 4MARTIN C. NONLINEAR. Prediction of chaotic time series [J]. Phys D, 1989, 35 (7): 335-356.
  • 5DAVIES M E. Reconstructing attractors from filtered time series [J]. Phys D, 1997, 101 (6): 195-206.
  • 6GARY M G, NABEEL B A, MARK S. Recurrence matrices and the preservation of dynamical properties [J]. Phys Lett A, 1997, 237 (12): 43-47.
  • 7HENRY D I, REGGIE B, HAMES B K. Prediction in chaotic nonlinear system: methods for time series with broadband Fourier spectra [J]. Phys Rev A, 1990, 41 (4): 1 782-1 807.
  • 8CAO Y J. A nonlinear adaptive approach to controlling chaotic oscillators [J]. Phys Lett A, 2000, 270: 171-176.
  • 9TOSE ALVAREZ RAMIREZ, HECTOR PUEBLA. Control of a non-linear system with time-delayed dynamics [J].PhysLett A, 1999, 262: 166-173.
  • 10李冬梅,王正欧.基于预测控制的混沌系统参数微调控制方法[J].信息与控制,2003,32(5):426-430. 被引量:7

二级参考文献16

  • 1[1]Ott E, Grebogi C, Yorkd j A. Controlling Chaos[J]. Phys Rev Lett. 1990, 64: 1196~1199.
  • 2[2]Boccalletti S, Grebogi C. The Control of Chaos: Theory and Applications[j]. Phys, Reports, 2000, 359: 103~197.
  • 3[3]Tose Alvarez Ramirsz, Hector Puebla. Control of a Nonlinear Sysrem with Time-delayde Dynamicd [J]. Phys Lett A,1999, 262: 166~173.
  • 4[4]Yagasaki K, Uozumi T. A New Approach for Controlling Chaotic Dynamiclal Systems[J]. Phys Lett A, 1998, 238:349~357.
  • 5[5]Cao Y J. A Nonlinear Adaptive Approach to Controlling Chaotic Oscillators[J]. Phys Lett A, 2000, 270: 171~176.
  • 6[6]Kevin J, Alistair M. Embedding as a Modeling Problem[J].Phy D, 1998, 120(10): 273~286.
  • 7Chen G, Chen G R, et al. Feedback control of unknown chaotic dynnmlcal systems based on time series data [ J ]. IEEE Trans Circuits & Systems-Ⅰ : Fundamental Theory & Applications,1999, 46(5) : 640 -644.
  • 8Ott E, Crebogi C, Yorke J A. Controlling chaos [ J ]. Phys Rev Left : 1990, 64(11): 1196-1199.
  • 9Tian Y C, Gao F R. Adaptive control of chaotic continuous-time system with delay [J]- Physica D, 1998, 117:1-12.
  • 10Gora P, Boyarsky A. A new approach to controlling chaotic systems [J]. Physica D, 1998, 111:1-15.

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部