期刊文献+

迟滞的磁流变阻尼器的随机最优控制力 被引量:3

Stochastic Optimal Control Force of Hysteretic MR Dampers
在线阅读 下载PDF
导出
摘要 用Bouc Wen迟滞模型描述磁流变阻尼器的动力学特性,分离阻尼器控制力的半主动部分和被动部分,被动部分结合到受控系统。先将该系统变换成等价的非迟滞的非线性随机控制系统,再运用随机平均法导出关于能量的It^o随机微分方程。根据随机动态规划原理,建立控制总能量的动态规划方程,并由此确定非clip的最优控制力。最后通过数值结果表明该控制力的有效性。 The dynamic behavior of an MR damper is characterized by the Bouc-Wen hysteretic model.The control force produced by the MR damper is separated into a semi-active part and a passive part incorporated in the uncontrolled system.The system with the Bouc-Wen hysteretic force is converted into an equivalent non-hysteretic nonlinear stochastic control system. Then an It stochastic differential equation for total energy is derived by using the stochastic averaging method.A dynamical programming equation for the controlled energy process is established base on the stochastic dynamical programming principle.The non-clipping optimal control force is obtained from the programming equation.Finally,The control efficacy is illustrated by the numerical results.
作者 任倩 应祖光
出处 《噪声与振动控制》 CSCD 2004年第3期9-11,共3页 Noise and Vibration Control
基金 浙江省自然科学基金资助项目(101046)
关键词 振动与波 迟滞的磁流变阻尼器 非线性随机最优控制 随机动态规划 随机平均 vibration and wave hysteretic MR damper nonlinear stochastic optimal control stochastic dynamical programming stochastic averagina
  • 相关文献

参考文献9

  • 1M.D.Symans and M.C.Constantinon.Semi-active control systems for seismic protection of structure:a state-of-the-art review[J].Engrg.Struct.,1999,21:469-487.
  • 2B.F.Spencer,S.J.Dyke,et al.Phenomenological model of a magnetorheological damper[J].ASCE J.Engrg.Mech.,1977,123:230-238.
  • 3L.M.Jansen and S.J.Dyke.Semiactive control strategies for MR dampers:comparative study[J].ASCE J.Engrg.Mech.,2000,126:795-803.
  • 4Z.G.Ying,W.Q.Zhu and T.T.Soong.A stochastic optimal semi-active control strategy for ER/MR dampers[J].J.Sound Vib.,2003,259:45-62.
  • 5W.Q.Zhu,Z.G.Ying,et al.Optimal nonlinear stochastic control of hysteretic systems[J].ASCE J.Engrg.Mech.,2000,126:1027-1032.
  • 6W.Q.Zhu,Z.G.Ying and T.T.Soong.An optimal nonlinear feedback control strategy for randomly excited structural systems[J].Nonlinear Dyn.,2001,24:31-51
  • 7Y.K.Lin and G.Q.Cai.Probabilistic Structural Dynamics:Advanced Theory and Application[M].New York:McGraw-Hill.1995.
  • 8W.Q.Zhu and Y.K.Lin.Stochastic averaging of energy envelope[J].ASCE J.Engrg.Mech.,1991,117:1890-1905.
  • 9J.Kushner. Optimality conditions for the average cost per unit time problem with a diffusion model[J].SIAM J.Control Optim.,1978,16:330-346.

同被引文献64

引证文献3

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部