期刊文献+

基于FCM的多传感器融合多目标跟踪的数据关联 被引量:10

Multi-sensor Fusion Multi-target Tracking Data Association Based on FCM
在线阅读 下载PDF
导出
摘要 数据关联是实现多目标跟踪的核心技术之一,也是实现多传感器信息融合的前提。本文采用改进的模糊c-均值法求解关联概率,并通过在不同的传感器所对应的观测空间上建立多目标运动状态的投影,将单传感器数据关联算法推广到多传感器信息融合系统,从而可在密集杂波环境中实现对多目标的数据关联和精确跟踪。仿真实验结果说明了本文方法的有效性。 The data association (DA) of track-to-measurement is a kernel problem in the multi-target tracking (MTT) system, and it is also to be the precondition of realizing the multi-sensor information fusion. In this paper, the data association probabilities can be obtained by using the modified fuzzy clustering means (FCMDA) approach, and by means of projecting the target states into the measurement spaces of multi-sensor, the FCMDA algorithm for signal sensor system is extended into the multi-sensor tracking system, and therefore the accurate tracking for multi-targets in heavily cluttered environment can be implemented. The simulation results indicate that the proposed algorithm is very efficient.
出处 《系统仿真学报》 CAS CSCD 2004年第9期2096-2099,共4页 Journal of System Simulation
基金 国家重点基础研究发展规划(973)项目(2001CB309403) 863计划项目(20002AA135210) 自然科学基金(60172019)
关键词 模糊聚类 数据关联 多传感器融合 多目标跟踪 fuzzy clustering data association multi-sensor fusion multi-target tracking
  • 相关文献

参考文献9

  • 1Bezdek C James. Convergence theory for fuzzy c-means: counter examples and repairs [J]. IEEE Transaction On Systems, Man and Cybernetics, 1987, 17: 873-877.
  • 2Ashraf M. Aziz, Murali Tummala, Roberto Cristi. Fuzzy logic data correlation approach in multi-sensor multi-target tracking systems [J], Signal Processing 76 (1999) 195} 209.
  • 3Y. Bar-Shalom, T.E. Fortmann. Tracking and Data association [M]. New York, Academic Press, 1988.
  • 4Y. Bar-Shalom and X. R. Li. Estimation and Tracking [M]. Boston, Artech House, 1993.
  • 5Seong-Taek Park, Jang Gyu Lee. Improved Kalman filter design for three-dimensional rada tracking [J]. IEEE Transactions on aeroapace and electronic systems, 2001,37(2):727-739.
  • 6R.J. Fitzgerald. Development of practical PDA logic for multitarget tracking by microprocessor [A]. in: Y. Bar-Shalom (Ed.), Multitarget–Multisensor tracking: Advanced Application [C]. Noorwood, MA, Artech House, 1990.
  • 7Mourad Oussalah, Joris De Schutter, Hybrid fuzzy probabilistic data association filter and joint probabilistic data association filter [J], Information Sciences 142 (2002) 195–226.
  • 8R.N. Dave. Characterization and detection of noise in clustering [J], Pattern Recognition Lett. 12 (1991) 657–664.
  • 9何金国,石青云.一种新的聚类分析算法[J].中国图象图形学报(A辑),2000,5(5):401-405. 被引量:10

二级参考文献5

共引文献9

同被引文献84

引证文献10

二级引证文献76

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部