期刊文献+

二阶卡尔曼滤波分布估计算法 被引量:6

Second Order Estimation of Distribution Algorithms Based on Kalman Filter
在线阅读 下载PDF
导出
摘要 分布估计算法由于其较强的理论基础已成为进化计算研究的新热点 .从卡尔曼滤波的角度来看 ,它的作用实际上是一个递归滤波器 ,但作用在一个种群上的分布估计算法相当于只有一个信息源 .因此 ,该文利用信息融合的思想 ,将种群分成若干子种群 ,各子种群独立地使用二阶分布估计算法来估计其状态 ,这样就可从多个信息源获得信息 .然后用卡尔曼滤波器将这多个信息源的信息相融合 ,以产生更准确的估计 ,并将估计信息反馈到各子种群中 .实验结果表明 ,相对于已有的二阶分布估计算法 ,该文算法的稳定性和全局搜索能力都得到了很大提高 ,从而说明了该文算法的有效性 . Estimation of Distribution Algorithms (EDAs) are new evolutionary algorithms based on probabilistic model and have become a new focus in the field of evolutionary computation. From the view point of Kalman filter, EDA actually is a filter with single sensor, so its stability is poor and it is prone to be trapped in the local optima of the objective functions. To overcome these disadvantages, authors enhance its performance with Kalman filtering technique and propose a new algorithm, second order estimation of distribution algorithm based on Kalman filter. In this method, population is divided into several sub-populations, and a second order EDA for each sub-population is used to estimate the information of its state. Then, a Kalman filter is used to fuse the information so that more accurate state can be obtained. Finally, the information fused is fed back to each sub-population. Experimental results demonstrate that the algorithm outperforms available second order algorithm greatly both in the stability and the global search ability.
出处 《计算机学报》 EI CSCD 北大核心 2004年第9期1272-1277,共6页 Chinese Journal of Computers
基金 国家自然科学基金重点项目 (60 1 330 1 0 )资助
关键词 进化计算 卡尔曼滤波 分布估计算法 信息融合 evolutionary computation Kalman filter estimation of distribution algorithm information fusion
  • 相关文献

参考文献15

  • 1Baluja S.. Population-based incremental learning: A method for integrating genetic searching based function optimization and competing learning. Carnegie Mellon University, Pittsburgh, PA, USA: Technical Report CMU-CS-94-163, 1994
  • 2Muhlenbein H.. The equation for response to selection and its use for prediction. Evolutionary Computation, 1998, 5(3): 303~346
  • 3De Bonet, Isbell J.S., Viola P.. MIMIC: Finding optima by estimating probability density. In: Mozer M.C., Jordan M.I., Petsche T. eds.. Advances in Neural Information Processing System. Cambridge: The MIT Press, 1997, 424~431
  • 4Larranga P., Etxeberria R., Lozano A., Pefia J.M.. Optimization by learning and simulation of Bayesian and Gaussian networks. In: Proceedings of the 2000 Genetic and Evolutionary Computation Conference Workshop Program, Las Vegas, Nevada, USA, 2000, 201~204
  • 5Baluja S., Davies S.. Using optimal dependency-tree for combinatorial optimization: Learning the structure of the search space. Carnegie Mellon University, Pittsburgh, PA, USA: Technical Report CMU-CS-97-107, 1997
  • 6Soto M., Ochoa A., Acid S. et al.. Introduction the polytree approximation of distribution algorithm. In: Proceedings of the 2nd Symposium on Artificial Intelligent Adaptive Systems, CIMAF'99, La Habana, 1999, 360~367
  • 7Peliken M., Muhlenbein H.. The bivariate marginal distribution algorithm. In: Roy R., Furnhashi T., Chandhery P.K. eds.. Advance in Soft Computing Engineering Design and Manufacturing. London: Springer-Verlag, 1999, 521~535
  • 8Muhlenbein H., Mahnig T.. FDA-A scalable evolutionary algorithm for the optimization of additively decomposed function. Evolutionary Computation, 1999, 7(4): 353~376
  • 9Pelikan M.,Goldberg D.E.,Cantu-Paz E..BOA:The Bayesian optimization algorithm.In: Proceedings of the Genetic and Evolutionary Computation Conference, Orlando, Florida, USA, 1999, 525~532
  • 10Zhang B.T.. A Bayesian framework for evolutionary computation. In: Proceedings of the 1999 Congress on Evolutionary Computation, 1999, 1: 722~728

二级参考文献31

  • 1[1]Holland J H. Adaptation in Natural and Artificial Systems. Ann Arbor: Michigan Press, 1975
  • 2[2]Goldberg D E. Genetic algorithms in search, optimization, and machine learning. Reading, MA: Addison-Wesley, 1989
  • 3[3]Harik G, Goldberg D E. Linkage learning. In: Belew R et al eds. Foundations of Genetic Algorithms 4. San Mateo, CA: Morgan Kaufmann, 1996
  • 4[4]Muehlenbein H. Evolutionary algorithms: Theory and applications. RWCP Theoretical Foundation GMD Laboratory, Tech Rep: GMD-AS-GA-94-02, 1994
  • 5[5]Harik G. Linkage Learning via probabilistic modeling in the ECGA. University of Illinois at Urbana-Champaign, IlliGAL Rep: 99010, 1999
  • 6[6]Goldberg D E. A meditation on the application of genetic algorithms. University of Illinois at Urbana-Champaign, IlliGAL Rep:98003, 1998
  • 7[7]Kargupta H. Revisiting GEMGA: Scalable evolutionary optimization through linkage learning. In: Proc of IEEE Int'l Conf on Evolutionary Computation. Piscataway, NJ: IEEE Press, 1998
  • 8[8]Harik G et al. The compact genetic algorithm. In: Proc of the 1998 IEEE Conference on Evolutionary Computation. Piscataway, NJ: IEEE Service Center, 1998. 523~528
  • 9[9]Pelikan M, Muehlenbein H. Marginal distributions in evolutionary algorithms. In: Proc of the Int'l Conf on Genetic Algorithm Mendel'98 Brno, 1998. 90~95
  • 10[10] Knjazew D, Goldberg D E. OMEGA-Ordering messy GA: Solving permutation problems with the fast messy genetic algorithm and random. University of Illinois at Urbana-Champaign, IlliGAL Rep: 000004, 2000

共引文献26

同被引文献45

  • 1周战馨,高亚楠,陈家斌.基于无轨迹卡尔曼滤波的大失准角INS初始对准[J].系统仿真学报,2006,18(1):173-175. 被引量:24
  • 2周树德,孙增圻.分布估计算法综述[J].自动化学报,2007,33(2):113-124. 被引量:211
  • 3高同跃,龚振邦,罗均,冯伟.基于加速度计和角速率陀螺的超小无人直升机姿态控制系统[J].飞行器测控学报,2007,26(1):70-73. 被引量:6
  • 4R.E.Kalman.A New Approach to Linear Filtering and Prediction Problems.Journal of Basic Engineering,1960 (Series D):35~45
  • 5H.W.Sorenson.Least Squares Estimation:from Gauss to Kalman.IEEE Spectrum,1970(7):63~68
  • 6夏伟才,曾致远.一种基于卡尔曼滤波的背景更新算法[J].计算机技术与发展,2007,17(10):134-136. 被引量:13
  • 7Chickering D M. Learning Bayesian networks is NP-complete[ A]. Learning from Data: Artificial Intelligence and Statistics V[M]. New York, USA: Springer, 1996. 121-130.
  • 8Muhlenbein H, Mahnig T. FDA - a scalable evolutionary algorithm for the optimization of additively decomposed functions [ J].Evolutionary Computation, 1999, 7(4) : 353 - 376.
  • 9Zhang Q F. On stability of fixed points of limit models of univariate marginal distribution algorithm and factorized distribution algorithm [ J ]. IEEE Transactions on Evolutionary Computation,2004, 8(1): 80-93.
  • 10Cho D Y, Zhang B T. Continuous estimation of distribution algorithms with probabilistic principal component analysis [ A ]. Proceedings of the IEEE Conference on Evolutionary Computation[C]. Piscataway, NJ, USA: IEEE, 2001. 521 -526.

引证文献6

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部