期刊文献+

基于离散Markov决策过程的发电公司多阶段决策 被引量:2

Discrete Time Markov Decision Process Based Multi-Period Decision Problem for Generation Companies
在线阅读 下载PDF
导出
摘要 采用离散时间Markov决策过程(DTMDP)对以多阶段总利润最优为目标的发电公司决策问题进行研究.市场环境下,发电公司根据自身条件,其竞争策略可以是价格的接受者,也可以是价格的制定者.考虑了发电公司不同策略情况下市场均衡状态间的转换概率,分别给出了发电公司作为价格接受者和价格制定者时的多阶段决策模型.通过算例验证了所提模型的有效性和可行性. A novel strategy model based on discrete time Markov decision process (DTMDP) was proposed for a generation company to maximize its total multi-period profit in deregulation environment. In terms of the company's scale and market share in the market, it will compete as a price taker or a price maker. Different decision models with corresponding transition probabilities between market equilibria were developed for strategies of price-taker and price-maker respectively. Finally, it is shown via the numerical results that the proposed model of multi-period profit optimization for generation companies is effective.
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2004年第8期1238-1240,1245,共4页 Journal of Shanghai Jiaotong University
关键词 电力市场 离散时间Markov决策过程 决策问题 Decision making Discrete time control systems Electric power systems Markov processes Optimization
  • 相关文献

参考文献5

  • 1Ferrero R W, Rivera J F, Shahidehpour S M. Application of games with incomplete information for pricing electricity in deregulated power pools[J]. IEEE Transactions on Power System,1998,13(1):184-189.
  • 2Wen F S, David A K. Optimal bidding strategies and modelling of imperfect information among competitive generators[J]. IEEE Transactions on Power System,2001,16(1):15-21.
  • 3Yang L, Wen F, Wu F F, et al. Development of bidding strategies in electricity markets using possibility theory[A]. Proceedings of International Conference on Power System Technology[C]. Kunming, China: IEEE,2002.182-187.
  • 4Song H, Liu C, Lawarree J, et al. Optima electricity supply bidding by Markov decision process[J]. IEEE Transactions on Power Systems,2000,15(2):618-624.
  • 5Xiong G, Hashiyama T, Okuma S. An electricity supplier bidding strategy through Q-Learning[A]. IEEE Power Engineering Society Summer Meeting[C]. Chicago:IEEE,2002.1516-1521.

同被引文献15

  • 1胡开顺,叶邦彦,王卫平,李帅.面向集群制造的模具多项目生产管理系统研究[J].组合机床与自动化加工技术,2006(3):105-108. 被引量:3
  • 2Choi J, Realff M J, Lee J H. Dynamic programming in a heuristically confined state space: a stochastic strained project scheduling application [ J ]. Computers and Chemical Engineering, 2004,28 (6) : 1039-1058.
  • 3Choi J, Realff M J, Lee J H. An algorithmic framework for improving heuristic solutions. Part I. A deterministic discount coupon traveling salesman problem [ J ]. Computers and Chemical Engineering ,2004,28 ( 8 ) : 1285-1296.
  • 4Choi J, Lee J H, Realff M J. An algorithmic framework for improving heuristic solutions. Part II. A new version of the stochastic traveling salesman problem [ J ]. Computers and Chemical Engineering,2004,28 ( 8 ) : 1297-1307.
  • 5Puterman M L. Markov decision processes:discrete stochastic dynamic programming [ M ]. New Jersey, USA : John Wiley & Sons ,2005.
  • 6Altman E. Constrained Markov decision processes [ M ]. Boca Raton, Florida, USA : CRC Press LLC, 1999.
  • 7Wen F S,David A K.Optimal bidding strategies and modeling of imperfect information among competitive generators[J].IEEE Trans Power System,2001,16(1):15-21.
  • 8Song H,Liu C,Lawarree J,etal.Optimal electricity supply bidding by Markov decision process[J].IEEE Transactions on Power System,2000,15(2):618-624.
  • 9Watkins C,Dayan P.Q-learning[J].Machine Learning,1992,8(3/4):279-292.
  • 10Chrobak J,Pacut A,Karbowski A.Dynamic programming with ARMA,Markov,and NARMA models vs.Q-learning-case study[A].Proceedings of the IEEE-INNS-ENNS International Joint Conference[C].Como,Italy:IEEE,2000.265-270.

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部