期刊文献+

逻辑推理与算术运算合并系统的理论分析

A Theoretical Analysis of Combining System from Logical Reasoning to Arithmetic
在线阅读 下载PDF
导出
摘要 提出一个逻辑推理与算术运算合并系统的形式定义 ,通过合并算子把逻辑推理合并到算术系统中 ,使得在需要解决逻辑推理中的数值计算时 ,直接把问题转化为纯算术系统中的运算 ;文章对该形式系统作了理论上的分析 ,考察了合并系统的语法描述和语义解释 ,对其中的合并算子进行了定义和讨论 ,证明了该系统的可靠性与完备性 .由于该系统基于一阶逻辑 ,所以比Ohlbach和Koehler提出的基于集合的系统[1] A formal system, which combines logical reasoning languages to arithmetic languages through Combining operators, is proposed, so it can be used to solve numeric calculating problems in logical reasoning within pure arithmetic computing systems. The theoretic issue of the system is carefully analysed; the syntactical description and the semantical interpretation of the system are invested; and the notion of combining operators is formally defined and discussed in detail. This system is of the first order logic base and hence it is more powerful than the algorithm proposed by Ohlbach and Koehler in paper . The formal definition of this combining language is given; and the soundness and completeness theorems of this formal system are proved.
作者 周青 伍丽华
出处 《计算机学报》 EI CSCD 北大核心 2004年第8期1109-1114,共6页 Chinese Journal of Computers
关键词 合并语言 合并算子 相对可靠性 相对完备性 combined language combined operators relative soundness relative completeness
  • 相关文献

参考文献6

  • 1Ohlbach H.J., Koehler J.. How to extend a formal system with a Boolean algebra component. In:Schmidt P.H., Bibek W. eds.. Automated Deduction: A Basis for Applications,Vol.Ⅲ. Dordrecht: Kluwer Academic, 1998, 57~75
  • 2Ohlbach H.J., Koehler J.. Modal logics, description logics and arithmetic reasoning. Artificial Intelligence, 1999, 109(1~2): 1~31
  • 3Nilsson Nils J.. Artificial Intelligence:A New Synthesis. Morgan Kaufmann Pubilshers, Inc., 1998
  • 4Ceri S., Gottlob G., Tanca L.. Logic Programming and Databases. Berlin: Spinger-Verlag, 1990
  • 5Minsky M.. A Framework for representing knowledge. In: Proceedings of Readings in Knowledge Representation, San Francisco, CA, 1990, 245~262
  • 6Gabbay D.M., Ohlbach H.J.. Quantifier elimination in second-order predicate logic. In: Principles of Knowledge Representation and Reasoning(KR92). Cambridge, MA: Morgan Kaufmann, 1992, 425~435

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部