期刊文献+

一种基于决策树技术的短期负荷预测算法 被引量:7

A short-term load forecasting method based on decision-tree approaches
在线阅读 下载PDF
导出
摘要 提出了一种基于决策树技术的短期电力负荷预测新方法,能有效地考虑非负荷因素对短期负荷预测的影响。文中详细介绍了决策树技术的原理及其在短期负荷预测中的实现方法。实际电力系统应用结果数据表明,该方案能够有效提高短期负荷预测的精度。 This paper proposes a new short-term load forecasting method based on decision-tree approaches, which could efficiently take the non-load factors' influences into account. Principles of the decision-tree technique and its involvement in short-term load forecasting are summarized in detail. Results of its practical implementation in the electrical system show that this method could improve the accuracy of short-term load forecasting effectively.
出处 《电工电能新技术》 CSCD 2004年第3期55-58,75,共5页 Advanced Technology of Electrical Engineering and Energy
关键词 负荷预测 决策树 时间序列 数据挖掘 load forecasting decision-tree time series data mining
  • 相关文献

参考文献13

  • 1Amjady, N. Short-term hourly load forecasting using time-series modeling with peak load estimation capability [ J ]. IEEE Trans. on Power Systems, 2001, 16(3): 498-505.
  • 2S Rahman, M Baba. Software design and evaluation of a microcomputer-based automated load forecasting system [A].IEEE Summer Power Meeting [C]. Portland, Oregon, USA,1989. 782-788.
  • 3K hotanzad A, Afkhami-Rohani R, Tsun-Liang Lu, et al.ANNSTLF - a neural-network-based electric load forecasting system [J]. IEEE Trans. on Neural Networks, 1997, 8(4):835-846.
  • 4Shimakura Y, Fujisawa Y, Maeda Y, et al. Short-term load forecasting using an artificial neural network [ A ]. Proc. of ANNPS '93 [C]. Yokohama, Japan, 1993. 233-238.
  • 5Mori H, Kobayashi H. Optimal fuzzy inference for short-term load forecasting [A]. Proc. of Power Industry Computer Application Conference [C]. Salt Lake City, USA, 1995. 312-318.
  • 6Lambert-Torres G. Fuzzy techniques for load forecasting [A].Power Engineering Society Summer Meeting, IEEE [ C ]. Seattle, USA, 2000. 178-179.
  • 7Breiman L, Friend J H, Olshen R A. Classification and Regression Trees [ M ]. California: Belmont Wadsworth Inc,1984.
  • 8M W Kurrynski. The optimal strategy of a tree classifier [J].Pattern Recog., 1983, 16: 81-87.
  • 9L Hyafil, R L Rivest. Constructing optimal binary decision trees is NP-complete [J]. Inform. Processing Lett., 1976, 5(1): 15-17.
  • 10刘晨晖(LiuChenhui) ofTech Press).电力系统负荷预报理论和方法(Powersystemloadforecasttheoryandmethods)[M],Harbin Inst[M].哈尔滨:哈尔滨工业大学出版社(Harbin,1987..

二级参考文献5

  • 1徐勇 荆涛译.神经网络模式识别及其实现[M].北京:电子工业出版社,1999..
  • 2[3]Zadeh L A. Fuzzy Sets [J]. Information and Control, 1965, 8: 338-353.
  • 3[4]Kosko B. Neural Networks and Fuzzy Systems [M]. Prentice Hall, 1991.
  • 4[5]Kosko B. Fuzzy Engineering [M]. Prentice Hall, 1997. 36-41.
  • 5[6]Kosko B. Stochastic competitive learning [J]. IEEE Trans. on Neural Network, 1991, 2(5): 522-529.

共引文献4

同被引文献65

引证文献7

二级引证文献62

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部