期刊文献+

均值重心坐标的鲁棒算法及其几何性质 被引量:7

Robust Algorithm and Geometric Properties of the Mean Value Barycentric Coordinates
在线阅读 下载PDF
导出
摘要 均值重心坐标不仅适用于凸多边形 ,而且适用于星形多边形 已有定义方法在多边形边界处具有奇异性 ,计算时容易产生数值不稳定问题 ,因而不适用于几何计算 首先分析和比较了已有的各种重心坐标的定义方法 ,提出了一种鲁棒的均值重心坐标计算方法 。 The mean value barycentric coordinates proposed by Floater will lead to singularity when a given point approaches the edge of polygon, causing numerical instability in geometric computation. A robust algorithm is proposed to overcome this singularity. Linearity along polygon edges and Lagrangian behavior at the vertices are verified both in theory and in practice.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2004年第6期772-776,共5页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金 ( 60 3 73 0 3 6 60 3 3 3 0 10 ) 国家重点基础研究发展规划项目 ( 2 0 0 2CB3 12 10 0 0 1) 国家创新研究群体科学基金 ( 60 0 2 12 0 1)资助
关键词 平面多边形 均值重心坐标 参数化 鲁棒性 planar polygon mean value barycentric coordinates parametrization robustness
  • 相关文献

参考文献8

  • 1Wachspress Eugene A Rational Finite Element Basis[M] New York: Academic Press, 1975
  • 2Loop Charles, DeRose Tony. A multisided generalization of Bézier surfacesJ]ACM Transactions on Graphics, 1989, 8(3): 204~234
  • 3Eck Matthias, DeRose Tony, Duchamp Tom, et al. Multiresolution analysis of arbitrary meshes[A]. In: Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH, Los Angeles, CA, 1995. 173~182
  • 4Floater Michael S. Parametrization and smooth approximation of surface triangulations[J]. Computer Aided Geometric Design, 1997, 14(3): 231~250
  • 5Floater Michael S. Mean value coordinates[J]. Computer Aided Geometric Design, 2003, 20(1): 19~27
  • 6Meyer Mark, Lee Haeyoung, Barr Alan, et al. Generalized barycentric coordinates on irregular polygons[J]. Journal of Graphics Tools, 2002, 7(1): 13~22
  • 7Warren Joe. Barycentric coordinates for convex polytopes[J]. Advances in Computational Mathematics, 1996, 6(2): 97~108
  • 8Sibson R. A brief description of natural neighbour interpolation[A]In: Barnett V, ed. Proceedings of Interpreting Multivariate Data[C]. Chichester: John Wiley, 1981. 21~36

同被引文献31

  • 1吴宗敏.HERMITE—BIRKHOFF INTERPOLATION OF SCATTERED DATA BY RADIAL BASIS FUNCTIONS[J].Analysis in Theory and Applications,1992,8(2):1-10. 被引量:7
  • 2彭群生,胡国飞.三角网格的参数化[J].计算机辅助设计与图形学学报,2004,16(6):731-739. 被引量:34
  • 3黄超超,凌永顺,吕相银.地形纹理映射方法研究[J].计算机仿真,2005,22(1):209-212. 被引量:11
  • 4谷留新,刘克轩.改进的基于mean value重心坐标的多边形变形[J].计算机工程与应用,2005,41(29):74-76. 被引量:6
  • 5Floater M. Parametrization and smooth approximation of surface triangulations[J]. Computer Aided Geometric Design, 1997, 14(2): 231-250
  • 6Desbrun M, Meyer M, Alliez P. Intrinsic parameterizations of surface meshes[J]. Computer Graphics Forum, 2002, 21(3): 209-218
  • 7Meyer M, et al. Generalized barycentric coordinates on irregular polygons[J]. Journal of Graphics Tools, 2002, 7(1): 13-22
  • 8Sander P, et al. Texture mapping progressive meshes[C]//Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH, Los Angles, 2001: 409-416
  • 9Sander P, et al. Multi-chart geometry images[C]//Proceedings of Eurographics Symposium on Geometry Processing, Aachen, 2003: 146-155
  • 10Praun E, Hoppe H. Spherical parametrization and remeshing[C]//Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH, San Diego, 2003: 340-349

引证文献7

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部