期刊文献+

基于神经网络数据分类方法 被引量:7

Research of data classification based on neural networks
在线阅读 下载PDF
导出
摘要 由于神经网络模型缺乏透明性,通过神经网络获得的知识难以被用户所理解,因而限制了它的发展。通过数据分类可以为神经网络提供一个解释机制,用规则来取代权值矩阵,可以较好的解决神经网络的“黑箱”问题。本文通过对分解式和示范式各种数据分类算法的分析,概括了它们的基本思想并对各种算法的性能进行比较,为实际应用领域不同类型和不同层次信息的数据分类选择提供决策说明。 Neural networks’ development is restricted because of its lack of transparent and its difficulty of understanding. A expound method can be provided by classification of data and rule extraction can replace weight matrix. Thus, the problem of black boxes of neural networks is resolved. This paper discusses the signification and feature of the classification based on artificial neural networks for data mining, the author analysis a lot of algorithms. The algorithms of the decomposition and pedagogical rule extraction are compared in detail, policy illustration is provided for choose of classification of data of different level and different type to real application domain.
出处 《辽宁工程技术大学学报(自然科学版)》 CAS 北大核心 2004年第4期507-509,共3页 Journal of Liaoning Technical University (Natural Science)
基金 国家自然科学基金项目资助(50207004)
关键词 神经网络 数据分类 规则提取 分解式 示范式 neural networks classification rule extraction decomposition pedagogical
  • 相关文献

参考文献6

二级参考文献26

  • 1张铃,张钹,吴福朝.神经网络的规划学习算法[J].计算机学报,1994,17(9):669-675. 被引量:13
  • 2张钹 张铃.问题求解的理论与方法[M].北京:清华大学出版社,1990..
  • 3[1] ANDREWS R, DIEDERICH J, TICKLE A. A Survey and critique of techniques for extracting rules from trained neural networks[J]. Knowedge-based Syst, 1995,8(6):1~33.
  • 4[2] TOWELLG, SHAVLIK J. Extracting refined rules from knowledge-based neural networks[J]. Machine Learning,1993,13(1):71~101.
  • 5[3] FU L. Rule generation from neural networks[J]. IEEE Trans on Syst Man and Cyber, 1994,24(8):1114~1124.
  • 6[4] CRAVEN M, SHAVLIK J. Using neural network for data mining[J]. Future Generation Computer Systems,1997,13:211~229.
  • 7[5] TOWELL G, SHAVLIK J. Interpretation of artificial neural networks: mapping knowledge-based neural networks into rules[M]. Advances in Neural Information Processing Systems Ⅳ, 1992.7~26.
  • 8[6] TOWELL G, SHAVLIK J. Refining Symbolic Knowledge Using Neural Networks[J]. Machine Learning,1994(4):29~44.
  • 9[7] WNEK J,MICHALSKI R. Comparing Symbolic and Subsymbolic Learning: Three Studies[J]. Machine Learning,1994(4):23~39.
  • 101999-07-07

共引文献35

同被引文献70

引证文献7

二级引证文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部