期刊文献+

二甲基醚/天然气双燃料均质压燃过程详细化学反应动力学数值模拟研究(Ⅰ)———二甲基醚反应机理研究 被引量:11

Numerical Study on the Mechanism of Dimethyl Ether and Natural Gas Dual-Fuel HCCI Combustion with a Detailed Kinetic Model(Ⅰ)——The Reaction Kinetics of Dimethyl Ether
在线阅读 下载PDF
导出
摘要 应用零维详细化学反应动力学模型对二甲基醚均质压燃燃烧反应机理进行了数值模拟研究。结果表明二甲基醚放热反应为典型的双阶段放热反应,经历低温反应、负温度系数区域和高温反应三个过程,高温反应又分为蓝焰和热焰两个阶段。二甲基醚自燃着火由过氧化氢(H2O2)分解所控制,甲醛(CH2O)是过氧化氢的主要来源。基于化学敏感性分析,得到了均质压燃二甲基醚反应的主要途径:首先是二甲基醚脱氢,经过两次加氧后得到甲醛基;然后生成甲酸基(HCO);最后生成一氧化碳(CO)。在二甲基醚的氧化反应过程中,氢氧根(OH)发挥着重要的作用,它是二甲基醚脱氢反应和CO氧化过程中的主要自由基。 The auto-ignition and combustion mechanisms of dimethyl ether (DME) in a four-stroke HCCI engine were investigated by using a zero-dimensional thermodynamic model coupled with a detailed chemical kinetics model. The results indicated that DME indicates two-stage combustion, heat release with low temperature reaction (LTR) and high temperature reaction (HTR), and heat release with HTR can be separated into two stages: blue flame and hot flame. HCCI ignition is controlled by hydrogen peroxide (H_(2)O_(2)) decomposition. Formaldehyde (CH_(2)O) is the main source of H_(2)O_(2) and CH_(2)O is formed by reaction 332. Based on the sensitivity analysis of chemical reactions, the major paths of the DME reaction occurring in the engine cylinder are clarified. The major paths of the DME reaction is abstract H from DME, followed by first addition O_(2 )and second addition O_(2), then oxidation to formaldehyde (CH_(2)O), the formyl radical (HCO), and finally CO. OH plays a very important role in DME oxidation and it is the essential radical in the H-atom abstraction from DME and CO oxidation. CO oxidation occurs at hot flame by the reaction: CO+OH=CO_(2)+H.
作者 秦静 尧命发
出处 《内燃机学报》 EI CAS CSCD 北大核心 2004年第4期296-304,共9页 Transactions of Csice
基金 国家自然科学基金资助项目(50106007) 国家重点基础研究发展规划项目(2001CB209201)。
关键词 均质压燃 化学反应动力学 二甲基醚 过氧化氢 代用燃料内燃机 Homogenous charge compression ignition (HCCI) Chemical reaction kinetics Dimethyl ether (DME) Elementary reaction
  • 相关文献

参考文献13

  • 1Najt P M,Foster D E.Compression-Ignition Homogeneous Charge Combustion[C].SAE Paper 830264,1983.
  • 2Yudai Yamasaki,Norimasa Lida.Numerical Analysis of Auto Ignition and Comubstion of n-Butane and Air Mixture in the Homogeneous Charge Compression Ignition Engine by Using Elementary Reactions[C].SAE Paper 2003-01-1090,2003.
  • 3Fiveland S B,Assanis D N.Development of a Two-Zone HCCI Combustion Model Accounting for Boundary Layer Effects[C].SAE Paper 2001-01-1028,2001.
  • 4Easley W L, Agarwal A, Lavoie G A. Modeling of HCCI Combustion and Emissions Using Detailed Chemistry[C]. SAE Paper 2001-01-1029,2001.
  • 5Miyomoto T, Harada A, Sasaki S, Akagawa H,et al. A Computational Investigation of Premixed Lean Diesel Combustion- Characteristics of Fuel-Air Mixture Formation, Combustion and Emissions[C]. SAE Paper 1999-01-0229,1999.
  • 6Kusaka J,Yamamoto T,Daisho Y. Simulating the Homogeneous Charge Compression Ignition Process Using a Detailed Kinetic Model for n-heptane Mixtures[J]. Int J Engine Research, 1(3):281-289.
  • 7Kong Song-Charng, Reitz Rolf D. Magnus Christensen and Bengt Johansson. Modeling the Effects of Geometry Generated Turbulence on HCCI Engine Combustion[C]. SAE Paper 2003-01-1087,2003.
  • 8Chen Zhili, Konno Mitsuru. Mitsuharu Oguma and Tadanori Yanal. Experimental Study of CI Natural-Gas/DME Homogeneous Charge Engine[C]. SAE Paper 2000-01-0329,2000.
  • 9Yao Mingfa, Zheng Zunqing, Qin Jing. Study on the Combustion Character of a New HCCI Combustion System Fueled with Dimethyl Ether (DME) and Compressed Natural Gas (CNG)[C]. Proceedings of the 4th Asia-Pacific Conference on Combustion ASPACC, 2003.313~317
  • 10Shudo T,Ono Y,Takahashi T. Influence of Hydrogen and Carbon Monoxide on HCCI Combustion of Dimethyl Ether[C]. SAE Paper 2002-01-2828,2002.

同被引文献30

引证文献11

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部