期刊文献+

短期负荷预测“双周期加混沌”法中的多步法与气象因子的使用 被引量:7

APPLICATION OF MULTI-STEP REGRESSION CONSIDERING CLIMATE FACTORS IN METHOD SYNTHESIZING DOUBLE PERIODS AND CHAOTIC COMPONENTS TO SHORT TERM LOAD FORECASTING
在线阅读 下载PDF
导出
摘要 短期负荷预测的“双周期加混沌”法是基于负荷记录数学性质的预测方法。为了进一步提高其预测精度而提出的三项改进为:(1)通过数值测试,优化了混沌子序列线性回归预测中三个参数,即嵌入空间维数、延时时间,和选择邻近矢量时采用的距离;(2)为了降低误差积累,采用了直接从邻近矢量回归出连续多个预测点的方法,并且采用离参考矢量最近的若干邻近矢量进行回归;(3)在 选择直接多步法中的相空间邻近矢量时,考虑了与各负荷值相对应的当天气象因子。将改进后的双周期加混沌法用于负荷预测实例,结果表明预测精度有显著提高。 The method of synthesizing double periods and chaotic components for short term load forecasting is based on the mathematical characteristics of load records. To further improve its forecasting accuracy three modifications are put forward. The first is that through the numerical tests three parameters in the linear regression forecasting of chaotic subsequence, i.e., the dimensions of embedded space, the time delay and the distance to be used to choose adjacent vectors, are optimized. The second is that to reduce the accumulated error several continuous forecasting points are directly regressed from adjacent vectors and several vectors which are the nearest to the referential vectors are used for regression. The third is that during the selection of adjacent vectors in the phase space in direct multi-step regression method the climate factors corresponding to the value of load data in the very day are considered. Applying the method synthesizing double periods and chaotic components with above-mentioned modifications to practical load forecasting example, the result shows that the forecasted load data are more accurate.
出处 《电网技术》 EI CSCD 北大核心 2004年第12期20-24,共5页 Power System Technology
关键词 电力系统 短期负荷预测 “双周期加混沌”法 多步法 气象因子 Chaos theory Data reduction Electric power systems Linearization Optimization Parameter estimation Regression analysis
  • 相关文献

参考文献8

二级参考文献53

  • 1丁晶,邓育仁,吴伯贤,杨荣富.洪水浑沌分析[J].成都科技大学学报,1993(6):1-5. 被引量:5
  • 2阙连元,叶世勋,丁剑明.开放式SCADA/EMS系统支持的在线负荷预测系统[J].电力系统自动化,1993,17(10):16-20. 被引量:8
  • 3梁志珊,陈建华,刘哲.基于人工神经网络的自适应电力系统短期负荷预测[J].东北电力学院学报,1994,14(1):47-51. 被引量:7
  • 4王文均,叶敏,陈显维.长江径流时间序列混沌特性的定量分析[J].水科学进展,1994,5(2):87-94. 被引量:44
  • 5王东升 曹磊.混沌、分形及其应用[M].合肥:中国科学技术大学出版社,1995..
  • 6王民量 张伯明 夏清.短期负荷预测的共轭梯度ANN方法(Short-Term 1oad forecasting using a mu1ti—1ayer neura1 network with conjugate gradient 1earning a1gorithm)[J].电力系统自动化(Automation of E1ectric Power Systems),1999,23(1):5-36.
  • 7盛骤 谢式千 等.概率论与数理统计(Probabi1ity theory and symbo1ic star)[M].北京:高等教育出版社(Higher Education Press),1996..
  • 8刘晨晖(Liu Chenhui).电力系统负荷预报理论与方法(Theories and methods of power system 1oad forecasting)[M[[M].哈尔滨:哈尔滨工业大学出版社,(Harbin Industry Unive,1987..
  • 9Hippert H S, Pedreira C E, Souza R C. Neural networks for short-term forecasting: a review and evaluation [J]. IEEE Trans. On Power Systems, 2001, 16(1): 44-55.
  • 10O'Neill-Carrillo E, Heydt G T, Kostelich E J. Chaotic phenomena in power systems: detection and applications [J]. Electric Machines and Power systems, 1999, 27: 79-91.

共引文献228

同被引文献66

引证文献7

二级引证文献111

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部