期刊文献+

修正Helmholtz方程Cauchy问题的最优滤波方法 被引量:2

Filtering method for the Cauchy problem of the modified Helmholtz equation
在线阅读 下载PDF
导出
摘要 考虑修正的Helmholtz方程Cauchy问题.这类问题是不适定的,即问题的解(如果存在)不连续依赖于测量数据.采用滤波正则化方法,得到H lder型误差估计,并给出数值试验. A Cauchy problem for the modified Helmholtz equation was considered. This problem was ill-posed, i.e., the solution (if it exists) did not depend continuously on the data. An optimal filtering method was presented for approximating the solution of this problem, and the H?lder type error estimate was obtained. Numerical illustration showed that the method worked effectively.
作者 程浩
机构地区 江南大学理学院
出处 《兰州大学学报(自然科学版)》 CAS CSCD 北大核心 2013年第6期873-876,共4页 Journal of Lanzhou University(Natural Sciences)
基金 江苏省自然科学青年基金项目(BK20130118) 中央高校基本科研业务费专项资金项目(JUSRP1033) 国家自然科学基金项目(11171136 11271163 11371174)
关键词 HELMHOLTZ方程 CAUCHY问题 滤波方法 不适定问题 正则化 Helmholtz equation Cauchy problem filtering regularization ill-posed problem regularization
  • 相关文献

参考文献12

  • 1Cheng Hong-wei,Huang Jing-fang,Leiterman T J. An adaptive fast solver for the modified Helmholtz equation in two dimensions[J].{H}Journal of Computational Physics,2006,(2):616-637.
  • 2Engl H W,Hanke M,Neubauer A. Regulariza-tion of inverse problems[M].Boston:Kluwer Aca-demic Publishes,1996.
  • 3Qin Hai-hua,Wei Ting. Quasi-reversibility and truncation methods to solve a Cauchy problem for the modified Helmholtz equation[J].Mathe-matics and Computers in Simulation,2009,(2):352-366.
  • 4Regińska T,Tautenhahn U. Conditional stabi-lity estimates and regularization with applications to Cauchy problems for the Helmholtz equation[J].{H}Numerical Functional analysis and Optimization,2009,(9/10):1065-1097.
  • 5Marin L,Elliott L,Heggs P J. Conjugate gradient-boundary element solution to the Cauchy problem for Helmholtz-type equations[J].Computa-tional Mechanics,2003,(3/4):367-377.
  • 6Fu Chu-li,Feng Xiao-li,Qian Zhi. The Fourier reg-ularization for solving the Cauchy problem for the Helmholtz equation[J].Applied Numerical Mathe-matics,2009,(10):2625-2640.
  • 7Fu Chu-li,Zhang Yuan-xiang,Cheng Hao. The a-posteriori Fourier method for solving ill-posed problems[J].{H}Inverse Problems,2012,(9):095002.
  • 8Wei Ting,Hon Y C,Ling Lee-van. Method of fun-damental solutions with regularization techniques for Cauchy problems of elliptic operators[J].Engi-neering Analysis with Boundary Elements,2007,(4):373-385.
  • 9Qin Hai-hua,Wen Da-wei. Tikhonov type regular-ization method for the Cauchy problem of the modi-fied Helmholtz equation[J].{H}Applied Mathematics and Computation,2008,(2):617-628.
  • 10Xiong Xiang-tuan,Shi Wan-xia,Fan Xiao-yan. Two numerical methods for a Cauchy problem for modified Helmholtz equation[J].Applied Mathe-matical Modelling,2011,(10):4951-4964.

同被引文献2

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部