摘要
This paper considers an eigenvalue problem containing small stochastic processes. For every fixed is, we can use the Prufer substitution to prove the existence of the random solutions lambda(n) and u(n) in the meaning of large probability. These solutions can be expanded in epsilon regularly, and their correction terms can be obtained by solving some random linear differential equations.
This paper considers an eigenvalue problem containing small stochastic processes. For every fixed is, we can use the Prufer substitution to prove the existence of the random solutions lambda(n) and u(n) in the meaning of large probability. These solutions can be expanded in epsilon regularly, and their correction terms can be obtained by solving some random linear differential equations.