期刊文献+

INITIAL-BOUNDARY VALUE PROBLEM AND CAUCHY PROBLEM FOR A QUASILINEAR EVOLUTION EQUATION 被引量:1

INITIAL-BOUNDARY VALUE PROBLEM AND CAUCHY PROBLEM FOR A QUASILINEAR EVOLUTION EQUATION
在线阅读 下载PDF
导出
摘要 In the present paper,the local existence of classical solutions to the periodic boundary problem and the Cauchy problem of a quasilinear evolution equation are studied under the assumptions that do not require the monotonicity of σi(s) (i= 1,…, n). The nonexistence of global solutions to the initial-boundary value problem of the equation is also discussed, a blowup theorem is proved and a concrete example is given. In the present paper,the local existence of classical solutions to the periodic boundary problem and the Cauchy problem of a quasilinear evolution equation are studied under the assumptions that do not require the monotonicity of σi(s) (i= 1,…, n). The nonexistence of global solutions to the initial-boundary value problem of the equation is also discussed, a blowup theorem is proved and a concrete example is given.
作者 杨志坚
出处 《Acta Mathematica Scientia》 SCIE CSCD 1999年第S1期487-496,共10页 数学物理学报(B辑英文版)
基金 Natural Science Foundation of Henan Province!(Grant No.98405070)  National Natural Science Foundation of China (Grant No.19
关键词 Initial-boundary value PROBLEM Cauchy PROBLEM QUASILINEAR evolution equation local solution BLOWUP Initial-boundary value problem, Cauchy problem, quasilinear evolution equation, local solution, blowup
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部