摘要
A new nano-assembly approach has been proposed for the preparation of macropore volume mesoporous aluminum oxide supports. Secondary nano-assembly and a frame structure mechanism for large pore volume mesoporous supports have been proposed. In a primary nano-assembly supersoluble micelle,aluminum hydroxide nanoparticles were precipitated in situ in surfactants with a volume balance (VB) less than 1,followed by secondary nano-assembly in linear and cylindrical shapes. The secondary nano-assembly of cylindrical aluminum hydroxides was calcined to form nano cylindrical aluminum oxides. For the formation of macropore volume mesoporous supports,we utilized a frame structure mechanism of mesoporous support,in which the exterior surface of the carrier may not be continuous. This macropore volume support has been used for the hydrotreatment of a residual oil catalyst,which possesses the following physical characteristics:pore volume 1.8―2.7 mL·g-1,specific surface area 180―429 m2·g-1,average pore diameter 17―57 nm,average pore diameter more than 10 nm (81%―94%),porosity 87%―93%,and crush strength 7.7―25 N·mm-1.
A new nano-assembly approach has been proposed for the preparation of macropore volume mesoporous aluminum oxide supports. Secondary nano-assembly and a frame structure mechanism for large pore volume mesoporous supports have been proposed. In a primary nano-assembly supersoluble micelle, aluminum hydroxide nanoparticles were precipitated in situ in surfactants with a volume balance (VB) less than 1, followed by secondary nano-assembly in linear and cylindrical shapes. The secondary nano-assembly of cylindrical aluminum hydroxides was calcined to form nano cylindrical aluminum oxides. For the formation of macropore volume mesoporous supports, we utilized a frame structure mechanism of mesoporous support, in which the exterior surface of the carrier may not be continuous. This macropore volume support has been used for the hydrotreatment of a residual oil catalyst, which possesses the following physical characteristics: pore volume 1.8–2.7 mL·g?1, specific surface area 180–429 m2·g?1, average pore diameter 17–57 nm, average pore diameter more than 10 nm (81%–94%), porosity 87%–93%, and crush strength 7.7–25 N·mm?1.