期刊文献+

基于SVM的4类运动想象的脑电信号分类方法 被引量:5

Research on Classification Method Based on SVM for the Four-Class Motor Imagery EEG
在线阅读 下载PDF
导出
摘要 针对传统支持向量机分类方法在脑电信号处理中存在分类正确率低的问题,将聚类思想与二叉树支持向量机结合构造多类SVM分类器。实验以"BCI Competition 2005"中的DatasetⅢa为例,先对采集的4类运动想象脑电信号应用小波变换进行去噪;再在分析小波包频带划分特点的基础上,利用小波包进行分解与重构,获取相应的能量特征;最后应用改进后的支持向量机(SVM)分类方法对特征信号进行分类。结果表明该方法分类正确率较高,可以达到91.12%,并且有效的减少了分类器的个数,最终达到较好的识别效果。 For the disadvantages of the traditional SVM classification in dealing with EEG signal,such as lower accuracy rate in classification,a multi-class SVM classifier is constructed by combining cluster idea with binary tree SVM.Based on data of the DatasetⅢa in the'BCI Competition 2005'.Firstly,fourclass motor imagery EEG data collected is de-noised by the wavelet transform.Secondly,on the basis of analyzing the frequency band feature of wavelet packets,the corresponding energy feature is extracted by using decomposition and reconstruction of wavelet packets.Finally,the classification of the obtained feature signal is completed by using the improved SVM classification method.The simulation results show that the higher accuracy rate in the classification,about 91.12%,can be achieved.The number of classifier can be reduced efficiently and the relatively good identifying effects can be achieved finally.
出处 《常州大学学报(自然科学版)》 CAS 2014年第1期42-46,共5页 Journal of Changzhou University:Natural Science Edition
基金 机器人技术与系统国家重点实验室开放基金重点项目(SKLRS-2010-2D-09)
关键词 脑机接口 4类运动想象 特征提取 聚类思想 支持向量机 brain-computer interface(BCI) four-class motor imagery feature extraction clustering idea support sector machines(SVM)
  • 相关文献

参考文献9

  • 1Millan del R J. On the need for on-line learning in brain-computer interfaces[A].Budapest:Institute of Electrical and Electronics Engineers Incorporation Publisher,2004.2877-2882.
  • 2WILSON J A,MELLINGER J,SCHALK G. A procedure for measuring latencies in brain-computer interfaces[J].IEEE Transactions on Biomedical Engineering,2010,(07):1785-1797.
  • 3Vapnik V N.统计学习理论的本质[M]北京:清华大学出版社,2000.
  • 4万柏坤,刘延刚,明东,孙长城,綦宏志,张广举,程龙龙.基于脑电特征的多模式想象动作识别[J].天津大学学报,2010,43(10):895-900. 被引量:13
  • 5YANG B H,YANA G ZH,YAN R G,et a1. Adaptive subject-based feature extraction in brain-computer interfaces using wavelet packet best basis decomposition[J].Medical Engineering &-Physics,2007,(01):48-53.
  • 6黄玲,张爱华.改进的决策树SVM在脑电识别中的应用[J].计算机工程与设计,2010,31(2):382-384. 被引量:2
  • 7赵志刚,吕慧显,李玉景,李京.一种基于聚类思想的SVM多类分类方法[J].青岛理工大学学报,2011,32(1):73-76. 被引量:3
  • 8薛欣,贺国平.基于隶属度分离测度SVM决策树层次结构设计方法[J].计算机应用研究,2007,24(9):162-163. 被引量:1
  • 9TANG Yah,TANG Jing-tian,GONG An-dong. Multi-class EEG classification for brain computer interface based on CSP[A].Sanya:Institute of Electrical and Electronics Engineers Computer Society Press,2008.469-472.

二级参考文献32

共引文献15

同被引文献39

  • 1袁胜发,褚福磊.基于引力球结构支持向量机多类算法的涡轮泵故障诊断[J].宇航学报,2006,27(4):635-639. 被引量:6
  • 2刘胜,李妍妍.自适应GA-SVM参数选择算法研究[J].哈尔滨工程大学学报,2007,28(4):398-402. 被引量:46
  • 3梁宏斌,严正俊.基于支持向量机的模式识别方法[J].现代电子技术,2007,30(16):193-194. 被引量:3
  • 4高上凯.浅谈脑—机接口的发展现状与挑战[J].中国生物医学工程学报,2007,26(6):801-803. 被引量:70
  • 5Wolpaw R, Birbaumer N, McFarland D J, et al. Vaughan, Brain-- compuetr interfaces for comumunication and control, Clin. Neuro- physiol [J].Neuroimage, 2002, 11 (3): 767-791.
  • 6Kelly, S P, Lalor E C, Finucane C, et al. Visual spatial attention control in an independent brain- computer interface [J]. IEEE Trans. Biomed. Eng. 2005, 52, 1588-1592.
  • 7Pfurtscheller G, Brunner C, Schlogl A, et al. Mu rhythm (de) syn chronization and EEG single--trial classification of different motor imagery tasks [J]. Neuroimage, 2006, 31 (1): 154-157.
  • 8Muller G, Putz G R, Schlogla, et al. 15 years of research at Graz University of Technology: Current projects [J]. IEEE Trans. NeuralSys. Rehab. Eng, 2006, 14 (2): 205-210.
  • 9Pfurtscheller G, Neuper C, Schlogl A, et al. Separability of EEG signals recorded during right and left motor imaginary using adap- tive autoregressive parameters [J].IEEE Trans. Rehabil Eng. , 1998 (6): 316-325.
  • 10Wolpaw J R, McFarland D J, Vaughan T M, et al. Brain comput- er interface research at the Wadsworth Center [J]. IEEE Trans. RehabiI Eng. , 2000 (8) ; 222 - 225.

引证文献5

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部