期刊文献+

磁场调制下的双电子量子点qubit 被引量:3

Two-Electron Quantum Dot Qubit Modulated by Magnetic Field
在线阅读 下载PDF
导出
摘要 研究了磁场中二维有限深抛物形量子点中双电子在总自旋分别为 S=0或 S=1时的电子态 ,在有效质量近似下 ,利用精确的对角化方法计算了系统的能级结构 .发现系统的基态总自旋 S可以通过改变磁场的大小进行调制 ,由此可以设计利用 S=0和 The electronic structure of a two electron two dimensional quantum dot confined by a finite depth parabolic potential is investigated with different total spin S =0,1 in a magnetic field.Energy levels are calculated by means of exact diagonalization method in the frame work of effective mass approximation.It is found that the total spin of ground state of this system could be modulated by changing the magnitude of the magnetic field,which means the two spin states with S =0,1 of a two electron two dimensional quantum dot confined by a finite height parabolic potential can be used to construct a quantum bit.
出处 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2004年第7期790-793,共4页 半导体学报(英文版)
基金 国家自然科学基金 (批准号 :10 1740 76) 国家重点基础研究专项经费 (批准号 :G2 0 0 1CB3 0 95 0 0 )资助项目~~
关键词 量子点 磁场 能级 量子比特 PACC 7320D 4110D 7125J quantum dot magnetic field energy level quantum bit
  • 相关文献

参考文献17

  • 1[1]Shor P W.Algorithms for quantum computation discrete log and factoring.Proceeding of the 35th IEEE Symposium on Foundations of Computer Science,1994:20
  • 2[2]Grover L K.A fast quantum mechanics algorithm for database search.Proceedings 28th ACM Symposium on Theory of Computation,1996:212
  • 3[3]Grover L K.Quantum mechanics helps in searching for a needle in a haystack.Phys Rev Lett,1997,79:325
  • 4[4]Cirac J I,Zoller P.Quantum computations with cold trapped Ions.Phys Rev Lett,1995,74:4091
  • 5[5]Chuang I L,Gershenfeld N A,Kubinec M.Experimental implementation of fast quantum searching.Phys Rev Lett,1998,80:3408
  • 6[6]Cory D,Fahmy A,Havel T.Ensemble quantum computing by nuclear magnetic resonance spectroscopy.Proc Nat Acad Sci USA,1997,94:1634
  • 7[7]Turchette Q A,Hood C J,Lange W,et al.Measurement of conditional phase shifts for quantum logic.Phys Rev Lett,1995,75:4710
  • 8[8]Ekert A,Jozsa R.Quantum computation and Shor's factoring algorithm.Rev Mod Phys,1996,68:733
  • 9[9]Loss D,DiVincenzo D P.Quantum computation with quantum dots.Phys Rev A,1998,57:120
  • 10[10]Bocko M F,Herr A M,Feldman M J.Prospects for quantum coherent computation using superconducting electronics.IEEE Trans Appl Superconduct,1997,7:3638

同被引文献31

引证文献3

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部