期刊文献+

学习者兴趣相似性在网络学习推荐中的应用

Application of Learners' Interestingness Similarity in Web Learning Recommendation
在线阅读 下载PDF
导出
摘要 研究学习者学习兴趣,并根据学习者兴趣相似性的方法获得目标学习者的最近邻居集合,可更好地为学习者提供自适应学习服务并产生相应学习推荐。首先从学习者的兴趣度入手,采用相似性度量方法计算目标学习者的最近邻居;最后依据邻居学习者的兴趣度来预测目标学习者对学习页面的兴趣度,并产生推荐。实验结果表明,基于学习者兴趣相似性的推荐方法,提高了最近邻居计算的准确性和推荐质量。 Study on learners’learning interest and acquisition of target users’nearest neighbor set based on learners’interest similarity provide learners with self-adapted learning service and corresponding recommendation.From learners’leaning interestingness and by similarity calculation method the target users’nearest neighbor was calculated.Based on page access behavior,the page interestingness of target users was predicted and recommendation was given.The experimental results show that the application of the learners’interestingness similarity improves calculation accuracy of nearest neighbors and commenda-tion efficiency.
出处 《河北北方学院学报(自然科学版)》 2013年第5期27-30,共4页 Journal of Hebei North University:Natural Science Edition
基金 安徽科技学院教研项目:应用型本科院校计算机基础课程分类分级教学体系的构建(X2012088)
关键词 学习者兴趣度 相似性 推荐算法 兴趣度矩阵 learners' interestingness similarity recommendation algorithm interestingness matrix
  • 相关文献

参考文献4

二级参考文献43

  • 1王建勇,单松巍,雷鸣,谢正茂,李晓明.Web search engine:characteristics of user behaviors and their implication[J].Science in China(Series F),2001,44(5):351-365. 被引量:4
  • 2王继民,彭波.搜索引擎用户点击行为分析[J].情报学报,2006,25(2):154-162. 被引量:45
  • 3吕佳.基于兴趣度的Web用户访问模式分析[J].计算机工程与设计,2007,28(10):2403-2404. 被引量:8
  • 4邵志峰,李荣陆,胡运发.基于中图分类法的用户兴趣模型研究[J].计算机应用与软件,2007,24(8):85-86. 被引量:9
  • 5YEONG C,YOON C, SOUNG K. Mining changes in customer buying behaviour for collaborative recommendations [ J ]. Expert Systems with Applications,2004,28 ( 2 ) : 359- 369.
  • 6PANAGIOTIS S, ALEXANDROS N, APSTOLOS N,et al. Collaborative recommender system: combing effectiveness and efficiency [ J ]. Expert Systems with Applications,2007,34(4) :2995-3013.
  • 7WENG Sung-shun, LIN Bin-shan, CHEN Wen-tien. Using contextual information and multidimensional approach for recommendation [J]. Expert Systems with Applications,2009,36(2) :1268-1279.
  • 8LEUNG C W, CHAN S C, CHUNG F,et al. An empirical study of a cross-level association rule mining approach to cold-start recommendations[ J]. Knowledge-based Systems,2008,21 (7) :515-529.
  • 9LI Yu, LIU Lu, LI Xue-feng. A hybrid collaborative filtering method for multiple-interests and multiple-content recommendation in e-commerce [ J ]. Expert Systems with Applications, 2005,28 ( 1 ) : 67- 77.
  • 10HUANG Cheng-lung, HUANG Wei-liang. Handing sequential pattern decay : developing a two-stage collaborative recommender system [ J ]. Eletronic Commerce Research and Applications, 2008,8 ( 3 ) : 117-129.

共引文献85

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部