期刊文献+

导带弯曲对有限深GaN/Ga_(1-x)Al_xN球形量子点中束缚极化子的影响及其压力效应 被引量:2

Effect of Band Bending on The Bound Polaron in A GaN/Ga_(1-x)Al_xN Spherical Finite-potential Quantum Dot Under Pressure
在线阅读 下载PDF
导出
摘要 采用三角势近似界面导带弯曲,研究了有限高势垒GaN/Ga1-x Al x N球形量子点中束缚极化子的结合能及其压力效应。数值计算了杂质态与声子之间相互作用对结合能的影响,同时与方形势垒进行了比较。结果表明,随着电子面密度的增加,导带弯曲效应增强,束缚极化子结合能逐渐下降。当电子面密度n s=(6.0,8.0)×1011/cm2且量子点半径R>10 nm时,束缚极化子的结合能趋近于一个相同且较小的值。结合能的极化效应主要来自杂质与光学声子相互作用的贡献。 The bound polaron in a GaN/Ga 1-x Al x N spherical finite-potential quantum dot under hydrostatic pressure is investigated by using a triangular potential to approximate the band bending of the interface potential.We performed numerical calculation on the binding energy of the electronphonon and ion-phonon interactions.The binding energy of a bound polaron is compared with the case of square potential.The results show that the binding energy of bound polaron decreases with the increasing of electron areal density.We observed that the binding energy closes to the different values of electron areal density n s =(6.0,8.0) × 1011/ cm2when the dot radius R > 10 nm.The ion-phonon interactions play a major role in the polaronic effect.
出处 《发光学报》 EI CAS CSCD 北大核心 2013年第9期1128-1134,共7页 Chinese Journal of Luminescence
基金 国家自然科学基金(11364028 10964006) 内蒙古自治区自然科学基金重大项目(2013ZD02) 内蒙古农业大学科技创新团队(NDPYTD2010-7)资助项目
关键词 量子点 束缚极化子 电子面密度 quantum dot the bound polaron electron areal density
  • 相关文献

参考文献13

  • 1张敏,闫祖威.压力下GaN/Ga_(1-x)Al_xN量子点中杂质态的界面效应[J].发光学报,2009,30(4):529-534. 被引量:3
  • 2LeiShi,Zu WeiYan.Exciton in a strained (001)‐oriented zinc‐blende GaN/Al<sub>x</sub>Ga<sub>1‐x</sub>N ellipsoidal finite‐potential quantum dot under hydrostatic pressure[J]Phys Status Solidi (c),2011(1).
  • 3E. Sadeghi.Impurity binding energy of excited states in spherical quantum dot[J]Physica E: Low-dimensional Systems and Nanostructures,2009(7).
  • 4Y.F. Huangfu,Z.W. Yan.Bound polaron in a spherical quantum dot under an electric field[J]Physica E: Low-dimensional Systems and Nanostructures,2008(9).
  • 5Shu-Shen Li,Jian-Bai Xia.Electronic states of a hydrogenic donor impurity in semiconductor nano-structures[J]Physics Letters A,2007(1).
  • 6M.E. Mora-Ramos,S.Y. López,C.A. Duque.A variational method for the description of the pressure-induced Γ – X mixing in GaAs-based quantum wells[J]Physica E: Low-dimensional Systems and Nanostructures,2007(5).
  • 7Arshak L. Vartanian,Lyudvig A. Vardanyan,Eduard M. Kazaryan.Hydrogenic impurity bound polaron in a cylindrical quantum dot in an electric field[J]Physics Letters A,2006(4).
  • 8A. John Peter.The effect of hydrostatic pressure on binding energy of impurity states in spherical quantum dots[J]Physica E: Low-dimensional Systems and Nanostructures,2005(3).
  • 9E. Kasapoglu,U. Yesilgül,H. Sari,I. S?kmen.The effect of hydrostatic pressure on the photoionization cross-section and binding energy of impurities in quantum-well wire under the electric field[J]Physica B: Physics of Condensed Matter,2005(1).
  • 10Z. W. Yan,S. L. Ban,X. X. Liang.Effect of electron-phonon interaction on surface states in zinc-blende GaN, AlN, and InN under pressure[J]The European Physical Journal B,2003(1).

二级参考文献19

  • 1张敏,班士良.磁场下半导体GaAs/Al_xGa_(1-x)As异质结中的杂质态[J].发光学报,2004,25(4):369-374. 被引量:9
  • 2Oyoko H O, Duque C A, Porras-Montenegro N. Uniaxial stress dependence of the binding energy of shallow donor impuri- ties in GaAs(Ga,A1)As quantum dots [J]. J. Appl. Phys. , 2001,90(2) :819-823.
  • 3Rosas R, Marin J L, Riera R. Hydrogenic impurities in spherical quantum dots in a magnetic field [ J ]. J. Appl. Phys. , 2001, 90(5) :2333-2337.
  • 4Oshiro K, Akai K, Matsuura M. Exciton-optical phonon interaction in a spherical quantum dot embedded in nonpolar matrix [J]. Phys. Rev. B, 2002, 66(15):153308-1-4.
  • 5Kohn W. Shallow impurity states in silicon and germanium [ J]. Solid State Phys. , 1957, 5 :257-320.
  • 6Qi X H, Kong X J, Liu J J. Effect of aspatially dependent effective mass on the hydrogenic impurity binding energy in a finite parabolic quantum well [J]. Phys. Rev. B, 1998, 58(16) :10578-10582.
  • 7Rajashabala S, Navaneethakrishnan K. Effective masses for donor binding energies in quantum well systems [ J ]. Mod. Phys. Lett. B, 2006, 20(24):1529-1541.
  • 8Sing J. Quantum Mechanics [ M ]. A. Wiley-Inter Science Publication: John Wiley & Sons INC, 1997.
  • 9Perlin P, Mattos L, Shapiro N A, et al. Reduction of the energy gap pressure coefficient of GaN due to the constraining presence of the sapphire substrate [J]. J. Appl. Phys. , 1999, 85(4) :2385-2389.
  • 10Vinet P, Ferrante J, Smith J R, et al. A universal equation of state for solids [ J ]. J. Phys. C, 1986, 19 ( 20 ) : IA67-IA73.

共引文献2

同被引文献12

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部