期刊文献+

基于MED的滚动轴承故障特征提取方法及其应用 被引量:10

Rolling Bearing Fault Feature Extraction Method Based on MED and Its Application
原文传递
导出
摘要 为提取微弱的轴承故障信号,研究了一种基于最小熵反褶积(Minimum Entropy Deconvolution,MED)的滚动轴承故障特征提取方法:在利用AR模型去除齿轮啮合产生的确定性信号的基础上,对保留信号进行最小熵反褶积,增强冲击信号。该方法避免了传统轴承故障诊断方法中带通滤波器设计的难题,实车测试表明:与共振解调技术相比,该方法提取的滚动轴承故障特征更加明显,更适合于工程应用。 In order to extract the weak bearing fault signal,a method of rolling bearing fault feature extraction based on Minimum Entropy Deconvolution(MED) is studied.After the AR model is used to remove the deterministic signal generated by gear engagement,the MED is applied to retention signals for enhancing impulses.This method avoids a design aporia of band-pass filter in the traditional bearing fault diagnosis method.The armored vehicle experiment results show that compared with the resonate demodulation technology,this method extracts more obvious fault features of rolling bearing and more adaptable to engineering application.
出处 《装甲兵工程学院学报》 2013年第3期35-38,共4页 Journal of Academy of Armored Force Engineering
基金 军队科研计划项目
关键词 滚动轴承 故障诊断 最小熵反褶积 rolling bearing fault diagnosis Minimum Entropy Deconvolution(MED)
  • 相关文献

参考文献12

  • 1冯辅周;安钢;刘建敏.军用车辆故障诊断学[M]北京:国防工业出版社,20073-5.
  • 2McFadden P D,Smith J D. Vibration Monitoring of Rolling Element Bearings by the High Frequency Resonance Technique:a Review[J].Tribology International,1984,(01):3-10.
  • 3刘金朝,丁夏完,王成国.自适应共振解调法及其在滚动轴承故障诊断中的应用[J].振动与冲击,2007,26(1):38-41. 被引量:25
  • 4胡易平,安钢,王凯,王传菲.基于小波自适应包络解调技术的滚动轴承故障识别研究[J].煤矿机械,2010,31(2):214-217. 被引量:3
  • 5Wiggins R A. Minimum Entropy Deconvolution[J].GEOEXPLORATION,1978,(16):21-35.
  • 6Sawalhi N,Randall R B,Endo H. The Enhancement of Fault Detection and Diagnosis in Rolling Element Bearings Using Minimum Entropy Deconvolution Combined with Spectral Kurtosis[J].Mechanical Systems and Signal Processing,2007,(21):2616-2633.doi:10.1016/j.ymssp.2006.12.002.
  • 7Sawalhi N,Randall R B. Spectral Kurtosis Enhancement Using Autoregressive Models[A].Melbourne,Australia,2005.
  • 8M.D.Sacchi,戴成泰.频率域约束条件下的最小熵反褶积[J].石油物探译丛,1995(1):10-18. 被引量:1
  • 9Endo H,Randal R B. Enhancement of Autoregressive Model Based Gear Tooth Fault Detection Technique by the Use of Minimum Entropy Deconvolution Filter[J].Mechanical Systems and Signal Processing,2007,(21):906-917.
  • 10王英,阎平凡.基于状态空间模型的最小熵反褶积[J].控制理论与应用,1994,11(3):309-314. 被引量:1

二级参考文献20

共引文献26

同被引文献49

  • 1高强,杜小山,范虹,孟庆丰.滚动轴承故障的EMD诊断方法研究[J].振动工程学报,2007,20(1):15-18. 被引量:94
  • 2Harris T A,Kotzalas M N.Rolling bearing analysis. . 2001
  • 3N. Sawalhi,R.B. Randall,H. Endo.The enhancement of fault detection and diagnosis in rolling element bearings using minimum entropy deconvolution combined with spectral kurtosis[J]. Mechanical Systems and Signal Processing . 2007 (6)
  • 4Ralph A Wiggins.Minimum entropy deconvolution. Geoexploration . 1978
  • 5N Tandon,A Choudhury.A review of vibration and acoustic measurement methods for the detection of defects in rolling element bearings[J]. Tribology International . 2000 (8)
  • 6J.-Y. LEE,A.K. NANDI.EXTRACTION OF IMPACTING SIGNALS USING BLIND DECONVOLUTION[J]. Journal of Sound and Vibration . 2000 (5)
  • 7Sawalhi N,Randall R B.Spectral Kurtosis Enhancement Using Autoregressive Models. ACAM Conference . 2003
  • 8基于振动信号的机械故障特征提取与诊断研究[D].北京:北京交通大学,2012.
  • 9Wiggins R A. Minimum entropy deconvolution [ J ]. Geoexplora- tion, 1978, 16(1) : 21 -35.
  • 10Lee J Y, Nandi A K. Extraction of impacting signals using blind deconvolution[ J ]. Journal of Sound and Vibration, 2000, 232 (5) : 945 - 962.

引证文献10

二级引证文献55

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部