期刊文献+

不确定二维离散状态滞后系统稳定性分析的Jensen不等式方法 被引量:2

Jensen inequality approach to stability analysis of uncertain two-dimensional discrete systems with state delays
在线阅读 下载PDF
导出
摘要 为了降低保守性,该文在Formasini-Machesini(FM)模型的基础上,研究了状态滞后二维(2D)系统的稳定性问题。通过构造合适的Lyapunov泛函,并借助Jensen积分不等式和线性矩阵不等式,得到了滞后范围相关的新的稳定性判据,并把它推广到不确定系统。数值算例验证了该文所提方法的有效性。 In order to reduce conservativeness,this paper considers the problem for uncertain two-dimensional discrete state-delay systems described by the Formasini-Machesiniguaran model(FM Model).By employing an appropriate Lyapunov functional and using the discrete Jensen inequality,a new stability delay-range-dependent criterion is presented in terms of linear matrix inequalities(LMIs),and the result is extended to the uncertain systems.Numerical examples are given to show the effectiveness of this method.
出处 《南京理工大学学报》 EI CAS CSCD 北大核心 2013年第1期60-64,共5页 Journal of Nanjing University of Science and Technology
基金 国家自然科学基金(61074006 61174038)
关键词 二维离散系统 状态滞后系统 滞后范围相关 詹森不等式 two-dimensional discrete systems state-delay systems delay-range-dependence Jensen inequality
  • 相关文献

参考文献3

二级参考文献9

  • 1谢湘生.带有滞后的广义系统的稳定性与镇定[M].广州:华南理工大学出版社,1996..
  • 2邵锡军.不确定离散时滞系统的鲁棒控制:博士学位论文[M].南京:南京理工大学,2001..
  • 3Du C, Xie L. Heontrol and Filtering of Two-dimensional Systems[ M]. Berlin: Springer-Verlag, 2002.
  • 4Wojciech P, James L, Krzysztof G, et al. Robust stability and stabilization of 2-D discrete state-delayed systems [ J]. Systems & Control Letters,2004, 51 (2) :277 - 291.
  • 5Du C, Xie L. Stability analysis and stabilization of uncertain two-dimensional discrete systems: an LMI approach [ J]. IEEE Transactions on Circuits and Systems. I:Foundamental Theory and Applications, 1999, 46 ( 11 ) : 1371 - 1374.
  • 6Du C, Xie L. LMI approach to output feedback stabihzation of 2-D discrete systems [ J]. International Journal of Comrol, 1999, 72(2) :97 -106.
  • 7Du C, Xie L, Zhang C. Solution for H∞ filtering of two-dimensional systems [ J]. Multidimensional Systems mad Signal Processing, 2000, 11(2) :301-320.
  • 8Xu S, Lain J, Lin Z. Positive real control for uncertain two-dimensional systems[J]. IEEE Transactions on Circuits and Systems.I:Foundamental Theory and Applications, 2002, 49 ( 11 ) : 1659 -1666.
  • 9邹云.N维系统可分性的充要判据[J].控制理论与应用,1990,7(4):98-100. 被引量:4

共引文献1

同被引文献27

  • 1Liberzon Daniel. Switching in systems and control [ M ]. Boston, US : Birkhanser,2003.
  • 2Skafidas Efstratios, Evans Robin J, Savkin Andrey V, et al. Stability results for switched controller systems [ J ]. Automatica, 1999,35 (4) :553-564.
  • 3Artstein Zvi, Ronen Jonathan. On stabilization of switched linear systems [ J ]. Systems and Control Letters ,2008,57 ( 11 ) :919-926.
  • 4Lin Hai, Antsaklis P J. Stability and stabilizability of switched linear systems : A survey of recent results [ J ]. IEEE Transactions of Automatic Control ,2009,54 (2) : 308-322.
  • 5Geromel, Colaneri Patrizio. Stability and stabilization of continuous time switched linear systems [ J ]. SIAM Journal of Control Optimal, 2006,45 (5) : 1915-1930.
  • 6Sun Ximing, Zhao Jun, Hill David J. Stability and L2- gain analysis for switched delay systems: A delay-dependent method [ J ]. Automatica, 2006,42 (10) : 1769-1774.
  • 7Branicky M S. Multiple Lyapunov functions and other analysis tools for switched and hybrid systems [ J ]. IEEE Transactions of Automatic Control, 1998,43 (4) : 475 -482.
  • 8Morse A S. Supervisory control of families of linear set point controllers-Part 1 : Exact matching [ J ]. IEEE Transactions of Automatic Control,1996,41 (10) :1413 -1431.
  • 9Hespanha J P, Morse A S. Stability of switched systems with average dwell-time [ J ]. Proceedings of the 38th IEEE Conference on Decision and Control, IEEE, 1999,3:2655-2660.
  • 10Zhai Guisheng, Hu Bo, Yasuda Kazunori, et al. Stability analysis of switched systems with stable and unstable subsystems: An average dwell time approach [ J ]. International Journal of Systems Science ,2001,32 (8) : 1055-1061.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部