摘要
为了降低保守性,该文在Formasini-Machesini(FM)模型的基础上,研究了状态滞后二维(2D)系统的稳定性问题。通过构造合适的Lyapunov泛函,并借助Jensen积分不等式和线性矩阵不等式,得到了滞后范围相关的新的稳定性判据,并把它推广到不确定系统。数值算例验证了该文所提方法的有效性。
In order to reduce conservativeness,this paper considers the problem for uncertain two-dimensional discrete state-delay systems described by the Formasini-Machesiniguaran model(FM Model).By employing an appropriate Lyapunov functional and using the discrete Jensen inequality,a new stability delay-range-dependent criterion is presented in terms of linear matrix inequalities(LMIs),and the result is extended to the uncertain systems.Numerical examples are given to show the effectiveness of this method.
出处
《南京理工大学学报》
EI
CAS
CSCD
北大核心
2013年第1期60-64,共5页
Journal of Nanjing University of Science and Technology
基金
国家自然科学基金(61074006
61174038)
关键词
二维离散系统
状态滞后系统
滞后范围相关
詹森不等式
two-dimensional discrete systems
state-delay systems
delay-range-dependence
Jensen inequality