期刊文献+

一种改进的双支持向量机 被引量:4

An Improved Twin Support Vector Machine
在线阅读 下载PDF
导出
摘要 双支持向量机是近年提出的一种新的支持向量机。在处理模式分类问题时,双支持向量机速度远远超过传统支持向量机,而且显示出较好的推广能力。但双支持向量机没有考虑不同输入样本点可能会对分类超平面的形成产生不同影响,在某些实际问题中具有局限性。为了克服这个缺点,提出了一种基于模糊隶属度的双支持向量机。该算法设计了一种基于距离的模糊隶属度函数,给不同的训练样本赋予不同的模糊隶属度,构建两个最优非平行超平面,最终实现二值分类。实验结果表明,这种改进双支持向量机的分类性能优于传统的双支持向量机。 As a new version of support vector machine(SVM),twin support vector machine(TWSVM) was proposed recently.TWSVM is not only faster than a conventional SVM,but shows good generalization for pattern classification.But the different effects of the different training samples on the classification hyperplanes are ignored in TWSVM,and the limitation is existed for some actual applications.Therefore,a twin support vector machine based on fuzzy membership was presented.A fuzzy membership function based on distance was designed,and TWSVM was modified by applying the fuzzy membership to every training sample,finally two optimal nonparallel hyperplanes were builded to achieve classification.The experiment results indicate that the classification performance of the algorithm is more superiorer than a traditional TWSVM.
作者 丁胜锋
出处 《辽宁石油化工大学学报》 CAS 2012年第4期76-79,82,共5页 Journal of Liaoning Petrochemical University
关键词 双支持向量机 模糊隶属度 模式分类 Twin support vector machine Fuzzy membership Pattern classification
  • 相关文献

参考文献8

  • 1Vapnik V N. The nature of statistical learning theory[M].New York:springer-verlag,2000.
  • 2顾亚祥,丁世飞.支持向量机研究进展[J].计算机科学,2011,38(2):14-17. 被引量:124
  • 3陈俏,曹根牛,谢丽娟.支持向量机的研究进展[J].现代计算机,2009,15(4):47-50. 被引量:8
  • 4Jayadeva,Khemchandani R,Chandra S. Twin support vector machines for pattern classification[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2007,(05):905-910.doi:10.1109/TPAMI.2007.1068.
  • 5Ye Qiaolin,Zhao Chunxia,Ye Ning. Least squares twin support vector machine classification via maximum one-class within class variance[J].Optimization Methods and Software,2012,(01):58-69.
  • 6熊思,鲁静.基于TW SVMs的入侵检测方法[J].湖北第二师范学院学报,2009,26(2):61-63. 被引量:1
  • 7徐金宝,业巧林,业宁,吴美红.一种无约束凸规划多平面修正TWSVM[J].计算机工程与应用,2010,46(36):29-33. 被引量:1
  • 8UniversityofcaliforniaIrvine. Indexof/databases/statlog[DB/OL].http://mlearn.ics.uci.edu/databases,2012.

二级参考文献91

共引文献129

同被引文献23

  • 1田新广,高立志,张尔扬.新的基于机器学习的入侵检测方法[J].通信学报,2006,27(6):108-114. 被引量:15
  • 2陈友,沈华伟,李洋,程学旗.一种高效的面向轻量级入侵检测系统的特征选择算法[J].计算机学报,2007,30(8):1398-1408. 被引量:46
  • 3LE T, TRAN D, MA W, et al. Robust support vector machine[Z]. International Joint Conference on Neural Networks, Beijing, 2014.
  • 4BLOOM V, GRIVA I, KWON B, et al. Exterior-point method for support vector machines[J]. IEEE Transactions on Neural Networks and Learning Systems, 2014,25 (7) : 1390 - 1393.
  • 5JAVADEVA R K, KHEMCHANDANI R, CHANDRA S. Twin support vector machines for pattern classification[J]. IEEE Transactions Pattern Analysis and Machine Intelligence,2007,29 (5) : 905 - 910.
  • 6PENG Xinjun. A v-twin support vector maehine(v-TSVM)classifier and its geometric algorithms[J]. Information Sci- ences, 2010,180; 3863 - 3875.
  • 7SHAO Yuanhai, ZHANG Chunhua, DENG Naiyang, et al. Improvements on twin support vector machine[J]. IEEE Transaction on Neural Networks,2011,22(6) : 1045 - 9227.
  • 8DING Shifei, YU Junzhao,QI Bingjuan, et al. An overview on twin support vector machines[J]. Artificial Intelligence Review,2014, 42(2) :245 - 252.
  • 9MANGASARIAN O L, MUSICANT D R. Successive overrelaxation for support vector machines[J]. IEEE Transactions on Neural Networks,1999,10(5) : 1032 - 1037.
  • 10BLAKE C, MERZ C J. UCI Repository for machine learning databases[EB/OL]. (1998 - 01 - 12) [2014 - 09 - 06]. Irv- ineCA:University of California, Department of Information and Computer Sciences. http://www, ies. uci. edu/mlearn/ MLRepository. html.

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部