期刊文献+

不同散热条件下微燃烧的数值模拟

Numerical simulation of micro-combustion for different heat loss conditions
在线阅读 下载PDF
导出
摘要 散热是影响微尺度燃烧器燃烧稳定性的重要因素之一。本实验通过在一个长40 mm、内径2 mm、外径4 mm的石英玻璃直圆管表面施加不同的外部吹风温度,控制其表面散热。研究4、107、756℃外部风温下,微燃烧器的工作性能,其中燃料混合气体流量为0.16、0.28、0.32 L/min。实验测得燃烧器壁面温度,结合数值模拟研究内部燃烧过程。计算结果显示,提高燃料流量或外部风温可以提升反应强度、抑制熄火。如在风温107℃时,燃料气体当量配比下,当流量由0.16 L/min上升到0.32 L/min时,峰值温度由1538 K上升到1620 K;在流量0.28 L/min时,燃料气体当量配比下,当外部风温由4℃上升到756℃时,峰值温度由1592 K上升到1731 K。 Heat loss is one of the important factors,which affect the stability of the micro-scale combustion.Cooling wind with different temperatures sweeps the external surface of a straight round tube made of quartz glass with the length of 40 mm,the inner diameter of 2 mm and the outer diameter of 4 mm,in order to control the surface heat loss.The working property of the micro combustor under different cooling temperatures of 4,107,756℃ was analyzed.The flow rates of fuel mixture were 0.16,0.28,0.32L/ min.In the experiment the temperatures of the combustor wall were measured,and the internal combustion process through numerical simulation was studied.The experimental results indicated that increasing the flow rates of fuel mixture or external wind temperature would enhance the combustion intensity and suppress extinction.For instance,at the wind temperature of 107℃ and equivalence ratio of 1,when the flow rates of fuel mixture increased from 0.16 L/min to 0.32 L/min,the peak temperatures increased from 1538 K to 1620 K;at the fuel-mixture flow rate of 0.28 L/min and the equivalent ratio of 1,when the wind temperatures increased from 4℃ to 756℃,the peak temperatures increased from 1592 K to 1731 K accordingly.
出处 《能源工程》 2012年第1期6-11,共6页 Energy Engineering
基金 国家自然科学基金资助项目(51106135) 中国博士后科学基金资助项目(20110491769)
关键词 微燃烧 散热 稳燃 数值模拟 micro combustion heat loss stable burning numerical simulation
  • 相关文献

参考文献3

二级参考文献28

  • 1EPSTEIN A H,SENTURIA S D,Macro power from micro machinery[J].Science,1997,276:1211.
  • 2MEHRA Amit,ZHANG Xin,Ayon Arturo A,et al.A six-wafer combustion system for a silicon micro gas turbine engine[J].Journal of Microelectromechanical Systems,2000,9 (4):517-527.
  • 3KELVIN F U,KNOBLICH A J,MARTINEZ F C,et al.Design and experimental results of small-scale rotary engines[C]// Proceedings of 2001 International Mechanical Engineering Congress and Exposition.New York:ASME,2001:11-16.
  • 4OCHOA F,EASTWOOD C,RONNEY P D,et al.Thermal transpiration based microscale propulsion and power generation devices[C]//The 7th International Microgravity Combustion Workshop.Cleveland,OH:[s.n.],2003.
  • 5ZHANG Chunbo,NAJAFI Khalil,BEMAL Luis P,et al.Micro combustion-thermionic power generation:feasibility,design and initial results[C] // The 12th International Conference on Solid State Sensor Actuators and Microsyslems.Boston:IEEE,2003:8-12.
  • 6YANG W M,CHOU S K,SHU C,et al.Microscale combustion research for application to microthermophotovoltaic systems[J].Energy Conversion and Management,2003,44:2625-2634.
  • 7HACHERT C L,ELLZEY J L,EZEKOYE O A.Effects of thermal boundary conditions on flame shape and quenching in ducts[J].Combustion and Flame,1998,112:73 -84.
  • 8SPADACCINI C M,MEHRA A,LEE J,et al.High power density silicon combustion systems for micro gas turbine engines[J].Journal of Engineering for Gas Turbines and Power,2003,125:709-719.
  • 9YANG S Y,CHUNG S H,KIM H J,Effect of pressure on effectiveness of quenching meshes in transmitting hydrogen combustion[J].Nuclear Engineering and Design,2003,224:199-206.
  • 10Nick Pornsin-sirirak T, Taia Y C, Nassef H, et al. Titanium-alloy MEMS wing technology for a microaerial vehicle application[J]. Sensors and Actuators, 2001, A 89:95-103.

共引文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部