期刊文献+

等离子体双极Euler-Maxwell方程的非相对论极限 被引量:2

The Non-relativestic Limit of Bipolar Euler-Maxwell Equations for Plasma Physics
在线阅读 下载PDF
导出
摘要 通过非相对论极限研究了等离子体双极Euler-Maxwell方程到可压的Euler-Poisson方程的收敛性,证明了两个系统局部光滑解的存在性.对于好的初值,运用能量方法和迭代方法严格验证了解的收敛性. The convergence of time-dependent bipolar Euler-Maxwell equations for plasmas to compressible Euler-Poisson equations is investigated in a torus via the non-relativistic limit.The local existence of smooth solutions to both systems is shown.For well-prepared initial value,the convergence of solutions is rigorously justified by classical energy method and iteration scheme.
出处 《应用数学》 CSCD 北大核心 2010年第1期179-184,共6页 Mathematica Applicata
基金 国家自然科学基金资助项目(10771009) 北京市自然科学基金资助项目(1082001)
关键词 双极Euler-Maxwell方程组 可压的Euler-Poisson方程 非相对论极限 Bipolar Euler-Maxwell equations Compressible Euler-Poisson equations Non-relativistic limit
  • 相关文献

参考文献1

二级参考文献18

  • 1Stein, E., Singular Integrals and Differentiability, Princeton, Princeton Univ. Press. New .Jersey, 1970.
  • 2Wang, S., Quasineutral limit of Euler-Poisson system with and without viscosity, Comm. Partial Differential Equations, 29, 2004, 419-456.
  • 3Wang, S. and Jiang, S., The convergence of the Navier-Stokes-Poisson system to the incompressible Euler equations, Comm. Partial Differential Equations, 31, 2006, 571-591.
  • 4Besse. C., Claudel, J., Degond. P. et al, A model hierarchy for ionospheric plasma modeling, Math. Models Methods Appl. Sci., 14, 2004, 393-415.
  • 5Brenier, Y., Convergence of tile Vlasov-Poisson system to the incompressible Euler equations, Comm. Partial Differential Equations, 25, 2000, 737-754.
  • 6Brezis, H., Golse F. and Sentis R., Analyse asymptotique de l'equation de Poisson couplde a la relation de Boltzmann, Quasi-neutralite des plasmas, C. R. Acad. Sci. Paris. 321, 1995, 953-959.
  • 7Chen. F., Introduction to Plasma Physics and Controlled Fusion. Vol. 1, Plenum Press, New York, 1984.
  • 8Chen, G. Q., Jerome, J. W. and Wang, D. H., Compressible Euler-Maxwell equations, Transport Theory and Statistical Physics, 29, 2000, 311-331.
  • 9Cordier. S. and Grenier, E., Quasineutral limit of an Euler-Poisson system arising from plasma physics, Comm. Partial Differential Equations, 25, 2000, 1099-1113.
  • 10Evans, L. C., Partial Differential Equations, A. M. S., Springer-Verlag, New York, 1999.

共引文献6

同被引文献11

  • 1XIAO Ling, LI Fucai & WANG Shu Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100080, China,Department of Mathematics, Nanjing University, Nanjing 210093, China,College of Applied Sciences, Beijing University of Technology, Beijing 100022, China.Convergence of the Vlasov-Poisson-Fokker-Planck system to the incompressible Euler equations[J].Science China Mathematics,2006,49(2):255-266. 被引量:4
  • 2JIANG Song,JU QiangChang,LI HaiLiang,LI Yong.Quasi-neutral limit of the full bipolar Euler-Poisson system[J].Science China Mathematics,2010,53(12):3099-3114. 被引量:2
  • 3CHEN Gui-qiang, JEROME J W, WANG De-huaCompressible Euler-Maxwe11 equations [ J ]. Transport Theory and Statistical Physics, 2000, 29 ( 3/4/5 ) : 311- 331.
  • 4PENG Yue-jun, WANG Shu, GU Qi-long. Relaxation limit and global existence of smooth solutions of compressible Euler-Maxwell equations [ J]. SIAM J Math Anal, 2011, 43(2) : 944-970.
  • 5UEDA Y, WANG Shu, KAWASHIMA S. Dissipative structure of the regularity-loss type and time asymptotic decay of solutions for the Euler-Maxwell system [ J ]. SIAM J Math Anal, 2012, 44 (3) : 2002-2017.
  • 6DUAN Ren-jun. Global smooth flows for the compressible Euler-Maxwell system: relaxation case [ J ]. Journal of Hyperbolic Differential Equations, 2011, 8 ( 2 ) : 375-413.
  • 7PENG Yue-jun, WANG Shu. Asymptotic expansions in two-fluid compressible Euler-Maxwell equations with small parameters[J]. Discrete Contin Dyn Syst, 2009, 23 ( 1/ 2) : 415-433.
  • 8HANOUZET B, NATALINI R. Global existence of smooth solutions for partially dissipative hyperbolic systems with a convex entropy [ J]. Arch Rational Mech Anal, 2003, 169 (2) : 89-117.
  • 9KAWASHIMA S, YONG Wen-an. Dissipative structure and entropy for hyperbolic systems of balance laws [ J]. Arch Rational Mech Anal, 2004, 174(3) : 345-364.
  • 10YONG Wen-an. Entropy and global existence for hyperbolic balance laws [J]. Arch Rational Meeh Anal, 2004, 172(2) : 247-266.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部