摘要
通过非相对论极限研究了等离子体双极Euler-Maxwell方程到可压的Euler-Poisson方程的收敛性,证明了两个系统局部光滑解的存在性.对于好的初值,运用能量方法和迭代方法严格验证了解的收敛性.
The convergence of time-dependent bipolar Euler-Maxwell equations for plasmas to compressible Euler-Poisson equations is investigated in a torus via the non-relativistic limit.The local existence of smooth solutions to both systems is shown.For well-prepared initial value,the convergence of solutions is rigorously justified by classical energy method and iteration scheme.
出处
《应用数学》
CSCD
北大核心
2010年第1期179-184,共6页
Mathematica Applicata
基金
国家自然科学基金资助项目(10771009)
北京市自然科学基金资助项目(1082001)