期刊文献+

Marcinkiewicz空间中带可变指数的熵解的先验估计(英文)

A Priori Estimate in Marcinkiewicz Spaces with Variable Exponent
在线阅读 下载PDF
导出
摘要 本文研究p(x)-Laplace方程的退化形式的带可变指数的Dirichlet问题,得到了Marcinkiewicz空间中带可变指数的熵解的先验估计. This paper studies a Dirichlet problem in divergence form with variable exponent,modeled on the p(x)-Laplace equation.A priori estimate in Marcinkiewicz spaces with variable exponent for entropy solution is obtained.
出处 《应用数学》 CSCD 北大核心 2010年第1期88-93,共6页 Mathematica Applicata
基金 Supported by Scientific Research Foundation of Hebei Polytechnic University(Z0819)
关键词 先验估计 可变指数 LAPLACE方程 Priori estimate Variable exponent Laplace equation
  • 相关文献

参考文献4

二级参考文献13

  • 1刘红,高红亚.非齐次障碍问题的正则性结果(英文)[J].数学杂志,2006,26(5):501-508. 被引量:3
  • 2Li Gongbao, Martio O. Local and global integrability of gradients in obstacle problems. Ann Acad Sci Fenn Ser A I Math, 1994, 19:25-34.
  • 3Giachetti D, Porzio M M. Local regularity results for minima of functionals of the calculus of variation.Nonlinear Analysis, T M A, 2000, 39:463-482.
  • 4Giaquinta M. Multiple integrals in the calculus of variations and nonlinear elliptic systems. Princeton,N J: Princeton University Press, 1983.
  • 5Gilbarg D, 2Yudinger N S. Eliptic partial differential equations of second order. Grundlehren der mathemaischen Wissenschaften 224. 2nd Edition. Springer-Verlag, 1983.
  • 6Meyers N G, Elcrat A. Some results on regularity for solutions of nonlinear elliptic sustems and quasiregular functions. Duke Math J, 1975, 42:121-136.
  • 7Li Gongbao, Martio O. Stability in obstacle problems. Math Scand, 1994, 75:87-100.
  • 8Tadeusz Iwaniec,Gaven Martin. Quasiregular mappings in even dimensions[J] 1993,Acta Mathematica(1):29~81
  • 9Tadeusz Iwaniec,Carlo Sbordone. On the integrability of the Jacobian under minimal hypotheses[J] 1992,Archive for Rational Mechanics and Analysis(2):129~143
  • 10Mariano Giaquinta,Enrico Giusti. On the regularity of the minima of variational integrals[J] 1982,Acta Mathematica(1):31~46

共引文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部