期刊文献+

基于FLNN的多粘菌素发酵过程建模 被引量:2

Modeling the Mycetozoan Fermentation Based on the Functional-Linked Neural Network
在线阅读 下载PDF
导出
摘要 为解决由于缺乏传感器使众多状态参数难以在线测量的问题,建立了多粘菌素的发酵过程模型,对许多重要的状态参数进行了预估.通过在FLNN内部增加一个带有局部激活反馈和一个局部输出反馈的自回归滑动平均滤波器使其成为动态的FLNN网络,并把它运用于多粘菌素发酵过程的建模中,结合遗传算法实现对其发酵过程的菌体浓度、总糖浓度和相对效价进行预估,为实际生产和优化控制提供了有利条件.仿真结果表明,基于改进的FLNN建立的多粘菌素发酵过程模型预估效果良好. It is essential to establish the model for Mycetozoan fermentation and estimate some important state parameters owing to the shortage of sensors and many parameters not being on-line measured.The functional-linked neural network can approach arbitrary non-linear function by learning examples. The network structure is very simple,and in the training stage its computational cost is smaller,but Mycetozoan fermentation process is dynamic. Therefore, we improved the FLNN structure where an Auto-Regressive Moving Average filter has been placed either before the activation function of the neuron or on the back connection from the output to the neuron's input.Then, the improved network that absorbs genetic algorithm is applied in modeling the process and state estimation such as biomass or substrate or produce concentration .The simulation result proved that the mapping ability of the suggested neural network is stronger and the prediction ability of the corresponding model is better.
作者 李海波 潘丰
出处 《江南大学学报(自然科学版)》 CAS 2004年第3期256-260,共5页 Joural of Jiangnan University (Natural Science Edition) 
关键词 FLNN网络 多粘菌素发酵 动态模型 遗传算法 functional-linked neural network Mycetozoan fermentation dynamical model genetic algorithm
  • 相关文献

参考文献3

  • 1张伟国,刘飞.神经网络在异亮氨酸发酵建模中的应用[J].无锡轻工大学学报,1996,15(2A):121-124.
  • 2[2]LETIT1A MIREA, TEODOR MARCU. System identification using functional-link neural Networks with dynamics tructure[EO/AC]. http://magic. uni-duisburg. de/files_downloads/IFAC02_LM_TM_2111. pdf,2003-12-2.
  • 3[3]ANGEL LOPEZ-GOMEZ,SHINICHI YOSHIDA,KAORU HIROTA. Fuzzy functional link network and its application to the representation of the extended kolmogorov theorem[J]. International Journal of Fuzzy System, 2002,4 (2): 690-695.

同被引文献14

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部