摘要
A free-form lens (FFL) is a special surface that is difficult to be fabricated. FFL are usually fabricated by computer-controlled optical surfacing (CCOS) technique. During CCOS, the material removal amount is determined by the unit removal function (URF) convoluting with the input data――the dwell time. When the removal amount and the URF are known, how to solve the input data involves the special algorithm――deconvolution. Usually, the input data are solved by virtue of low pass filter or iterative methods. However, an approximation solution would destroy the machining stability nec-essary to perform precisely CCOS. In this paper, to solve the input data, a new method that is based on the finite Fourier coefficient is put forward. It can give a continuous and accurate solution for fabricating choice. Several parameters are simulated, which influ-ence the process of CCOS, and evaluating on the effect of the method is also carried out. Experimental results verify that this method is suitable for guiding the manufacturing of high precision FFL.
A free-form lens (FFL) is a special surface that is difficult to be fabricated. FFL are usually fabricated by computer-controlled optical surfacing (CCOS) technique. During CCOS, the material removal amount is determined by the unit removal function (URF) convoluting with the input data — the dwell time. When the removal amount and the URF are known, how to solve the input data involves the special algorithm — deconvolution. Usually, the input data are solved by virtue of low pass filter or iterative methods. However, an approximation solution would destroy the machining stability necessary to perform precisely CCOS. In this paper, to solve the input data, a new method that is based on the finite Fourier coefficient is put forward. It can give a continuous and accurate solution for fabricating choice. Several parameters are simulated, which influence the process of CCOS, and evaluating on the effect of the method is also carried out. Experimental results verify that this method is suitable for guiding the manufacturing of high precision FFL.
作者
CHENG Haobo1,2, SUN Guozheng3 & FENG Zhijing2 1. Department of Optical Engineering, Beijing Institute of Technology, Beijing 100081, China
2. Department of Precision Instruments and Mechanology, Tsinghua University, Beijing 100084, China
3. China North Industries Group Corporation, Beijing 100089, China
基金
This work was supported by the National Natural Science Foundation of China (Grant Nos. 50175062, 60508001).