期刊文献+

六自由度并行机器人动力学模型及仿真 被引量:4

6-DOF Parallel Manipulator Dynamic Model and Simulation
在线阅读 下载PDF
导出
摘要 采用一种广泛应用于串行机器人动力学建模的方法──自然正交补(NOC)法, 结合d’Alembert虚功原理,推导出了不含约束力的六自由度并行机器人动力学模 型,并将它写成机器人动力学模型的一般形式,从而证明了在广义力对应的广义坐 标下,其惯性阵是对称、正定的。以此模型为基础,对一个典型运动进行了动力学仿 真,仿真结果验证了此模型的有效性。 The method of Natural Orthogonal Complement (NOC) widely used in serial manipulator's modeling is applied in parallel manipulator's dynamics modeling. Multiplying Newton-Euler equation by NOC matrix, the inertia vector of 6-DOF parallel manipulator is gotten. Substituting the inertia vector into principe of d' Alembert, a 6-DOF parallel manipulator dynamic model which do not contain the constraining force is obtained and rewritten to the general form of manipulator dynamic model. In this model, the wrench of whole system can be presented by the wrench of endeffector. So the simulation can be processed directly in the Cartesian coordinates, avoiding the complex problem of direct kinematics. Finally, an experiment of trajectory tracing control is given to illustrate that because this dynamic model is free of constraining force, so it is convenient and effective for model-based control.
出处 《机械科学与技术》 CSCD 北大核心 2000年第z1期138-140,共3页 Mechanical Science and Technology for Aerospace Engineering
关键词 并行机器人 动力学模型 仿真 Parallel manipulator Dynamic model Simulation
作者简介 方浩(1973-),男(汉族),陕西西安市人,西安交通大学系统工程研究所博士研究生
  • 相关文献

参考文献4

  • 1[1]Wehage R A, et al. Generalized Coordinate Partitioning for Dimension Reduction in Analysis of Dynamic System [J].ASME J. of Mech. Design. 1982,104(1) :247~255
  • 2[2]Kamman J W, et al. Dynamics of Constrained Multibody Systems[J]. ASME J of Appl. Mech, 1984,51:899~903
  • 3[3]Kim S S, et al. Decomposition for State Space Representation of Constrained Mechanical Dynamic Systems[J]. ASME J. Mech. , Trans. , and Auto, in Design, 1986,108:183~188
  • 4[4]Angeles J, et al. The Modeling of Holonomic Mechanical Systems Using a Natural Orthogonal Complement [ J].Translations of CSME, 1989,13(4)

同被引文献83

引证文献4

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部