摘要
根据情感的连续空间模型,提出一种改进的排序式选举算法,实现多个情感分类器的融合,取得了很好的情感识别效果。首先以隐马尔可夫模型(HMM)和人工神经网络(ANN)为基础,设计了三种分类器;然后用改进的排序式选举算法,实现对三种分类器的融合。分别利用普通话情感语音库和德语情感语音库进行实验,结果表明,与几种传统融合算法相比,改进的排序式选举法能够取得更好的融合效果,其识别性能明显优于单分类器。该算法不仅简单,而且可移植性好,可用于其他任意多个情感分类器的融合。
According to the continuous space model for emotion,an improved queuing voting algorithm was proposed to implement the fusion of multiple emotion classifiers for a good emotion recognition result.Based on hidden Markov model(HMM) and artificial neural network(ANN),three kinds of classifier were designed.Then,the improved queuing voting algorithm was used to fuse them.Experimental study had been carried out by using Mandarin emotional speech database recoded and emotional speech database respectively.The res...
出处
《计算机应用》
CSCD
北大核心
2009年第2期381-385,共5页
journal of Computer Applications
基金
国家863计划项目(2006AA01Z135)
教育部博士点基金资助项目(20070006057)
关键词
语音情感识别
数据融合
隐马尔可夫模型
人工神经网络
排序式选举法
speech emotion recognition
data fusion
Hidden Markov Model(HMM)
Artificial Neural Network(ANN)
queuing voting algorithm