期刊文献+

RBF和PIDNN在伺服电机模型中的应用比较 被引量:2

Application Contrast on Servo Electromotor Model between RBF and PIDNN
在线阅读 下载PDF
导出
摘要 为了更好地发挥RBF和PIDNN神经网络的优势,通过对伺服电机模型辨识和控制问题的分析,对RBF和PIDNN网络的应用效果进行了仿真实验的对比研究。结果表明,RBF神经网络结构复杂,参数难以调整,但具有最佳一致逼近能力,辨识效果优于PIDNN;PIDNN结构简单,比例元、积分元和微分元具有类似PID的控制作用,控制效果优于RBF。 To take the advantages of RBFNN and PIDNN,the simulations and contrast research of their application effect are done by analyzing model inentification and control problems of servo electromotor.The experimet results show that RBF network has complex structure and its parameters are difficult to adjust.But the RBFNN has an ability of optimal coherent approach,so its identification effect is better than the PIDNN.PIDNN has simple PID-function-bearing structure of proportion cell,integral cell and differential...
出处 《控制工程》 CSCD 2008年第S1期113-115,118,共4页 Control Engineering of China
关键词 径向基神经网络 PID神经元网络 伺服电机 系统辨识 神经网络控制 RBF PIDNN servo electromotor system identification neural networks control
  • 相关文献

参考文献3

二级参考文献6

  • 1王轶卿,赵英凯.基于神经网络的油品质量预测[J].控制工程,2004,11(5):403-405. 被引量:9
  • 2Jang J S R,Sun C T.Neurofuzzy modeling and control[J]. IEEE Trans Fuzzy Sys,1995,3(3):378-406.
  • 3Wang L X,Mendel J.Generating fuzzy rules by learning from examples[J].IEEE Trans Syst Man and Cyb,1992,22(6):1414-1427.
  • 4Linkens D A,Chen M Y.Input selection and partition validation for fuzzy modeling using neural network[J]. Fuzzy Sets and Systems,1999,107(2):299-308.
  • 5Jang J S R,Sun C T.Functional equivalence between radial basis functions and fuzzy inference systems[J].IEEE Trans on Neural Networks,1993,4(1):156-158.
  • 6杨平,彭道刚,韩璞,于希宁.神经网络预测控制算法及其应用[J].控制工程,2003,10(4):349-351. 被引量:38

共引文献6

同被引文献15

引证文献2

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部