期刊文献+

基于改进粒子群算法的PID-CMAC控制器设计 被引量:4

PID-CMAC controller design based on improved PSO algorithm
在线阅读 下载PDF
导出
摘要 小脑关节模型网络具有计算简单、学习速度快等特点,设计PID和CMAC的复合控制器既能够发挥PID控制器鲁棒性强的特点,又能够利用CMAC学习获取的知识根据输入的变化快速地做出响应,并能够提高控制系统的抗干扰能力。本文采用改进的粒子群算法对PID的控制参数进行优化,并在此基础上设计了一种新型的PID-CMAC复合控制器,通过仿真试验表明,该控制策略能够提高整个系统的控制品质。 The cerebellar model articulation controller has the advantages of simple computation and speedily learning. A compound controller which is designed and constructed based on CMAC and combined with a PID controller has two characteristics: the one is that the ability of the strong robustness of PID controller can be enhanced,the other is that the knowledge derived from CMAC learning could have response to the change of inputs rapidly and could improve the capacity of the anti-interference of the control system. The paper adopts the improved particle swarm optimizer to optimize the controls parameter of PID and to design a novel compound controller of PID and CMAC. Simulation results show that this control strategy can improve the control quality of the whole system.
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2006年第z3期1984-1985,共2页 Chinese Journal of Scientific Instrument
关键词 PSO CMAC PID 控制器 优化算法 PSO CMAC PID controller optical algorithm
  • 相关文献

参考文献4

二级参考文献15

  • 1韩璞,张丽静.热工过程控制系统参数优化方法的研究[J].华北电力学院学报,1993(1):50-57. 被引量:8
  • 2石琳珂.逐步缩小搜索范围的遗传算法[J].地球物理学进展,1995,10(4):67-79. 被引量:24
  • 3丁国锋,王孙安,林廷圻,史维祥.高阶CMAC神经网络的研究[J].信息与控制,1996,25(6):373-380. 被引量:3
  • 4周旭东,王国栋,李淑华.CMAC神经网络的N维概念映射算法[J].信息与控制,1996,25(4):233-237. 被引量:5
  • 5Francisco J. Gonzalez-Serrano, Anibal R. Figueiras-vidal,and antonio artes-rodriguez generalizing CMAC architecture and training[J]. IEEE Trans networks, 1998(6).
  • 6Elias J G.Genetic generation of connection patterns for a dynamic artificial neural network[C].In:Combinations of Genetic Algorithms and Neural Networks International Workshop, 1992-06:38~54
  • 7Fleming P J,Fonseca C M.Genetic algorithms in control systems engineering:a brief introduction[C].In:IEE Colloquium on Genetic Algorithms for Control Systems Engineering, 1993-05:1~5
  • 8Chin-chih Hsu,Shin-Ichi Yamada. A multi-operator self-tuning genetic algorithm for fuzzy control rule optimization[C].In:Proceedings of IEEE Industrial Electronics,Control and Instrumentation 22nd International Conference,vol 2,1996: 842~847
  • 9Sasaki T,Hsu C-C.A multi-operator self-tuning genetic algorithm for optimization[C].In:the 23rdIntemational Conference on Industrial Electronics, Contxol and Instrumentation,vol 3,1997:1034~1039
  • 10王桂平.机炉协调控制方案浅析[J].华中电力,1998,11(1):53-55. 被引量:2

共引文献24

同被引文献24

  • 1齐海龙,李秀娟.高斯基函数CMAC快速算法的改进及应用研究[J].南京理工大学学报,2005,29(2):140-143. 被引量:2
  • 2李辉.一种自适应CMAC神经网络控制器的设计与仿真[J].系统仿真学报,2005,17(9):2233-2235. 被引量:19
  • 3林旭梅,梅涛.一种基于自适应遗传算法的CMAC的学习率优化方法[J].系统仿真学报,2005,17(12):3081-3084. 被引量:8
  • 4张智,朱齐丹,李新飞,邢卓异.基于变学习率CMAC网络的自适应逆控制研究[J].计算机仿真,2006,23(8):97-101. 被引量:2
  • 5Tsai M C,et al.Design of a plug-in type repetitive controller forperiodic inputs[J].IEEE Transcations on Control SystemsTechnology,2002,10(2):547-555.
  • 6T. Yamamoto, R. Kurozumi, S. Fujisawa. "A Design of CMAC based Intelligent PID ConreoUer" [ A ]. Artificial Neural Net- works and Neural Information Processing[ C ]. LNCS 2714, Springer,2003:471 - 478.
  • 7Kuc T Y, Han W G. An Adaptive PID Learning Control of Tobot Manipulators [ J ]. Automatica,2000, (36) :717 - 725.
  • 8Yeh, Ming-Feng-F ; Leu. Min-Shyang; Chen, Ti-Hung H. Tun- ing of PID Controllers with CMAC-based Genetic Algorithm [A]. Proceedings of 2011 IEEE International Conference on Computer Science and AutomationEngineering [ C 1. Shang- hai : IEEE International Conference Publication, 2011 : 255 - 259.
  • 9Albus JS.A new approach to manipulator control: The cerebellar model articulation controller (CMAC). Journal of Dynamic Systems, Measurement and Control - Transactions of the ASME . 1975
  • 10Goldberg DE.Genetic algorithms in search, optimization, and machine learning. . 1989

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部