摘要
                
                    在直流负偏压120V作用下利用射频溅射和光刻剥离技术在InGaAsP/InP双异质结结构外延片表面淀积110nm厚、宽为2μm的W0.95Ni0.05金属薄膜应变条. 实验测得W0.95Ni0.05金属薄膜应变条边缘单位长度产生9.7×105dyn/cm压应变力.在这样压应变力作用下,W0.95Ni0.05金属薄膜应变条下InGaAsP/InP 双异质结结构内0.2~2μm深度范围内形成的条形波导的导波强度为1.5×10-3至1.7 ×10-1.与由W和SiO2应变薄膜所形成的光弹波导及其光弹光电子器件相比较,由W 0.95Ni0.05金属薄膜应变条形成的光弹效应波导结构在平面型光电子器件中有着更重要的实际应用.
                
                Deposition of 110-nm-thick, 2-μm-wide W0.95Ni0.05 metal thin film strain stripes on InGaAsP/InP heterostruc-ture wafer was carried out by using both rf sputtering with the samples under a negative dc bias of 120V and a photoresist lift-off technique. The compressive strainedge force per unit length of W0.95Ni0.05 metal thin-film stripes measured in the authors' experiments is 9. 7 × 10 dyn/cm. The strength of the stress-induced stripe waveguides is 1. 5 × 10-3- 1. 7 × 10-1 at depth range of 0. 2 - 2μm in InGaAsP/InP double heterostructures beneath W0.95Ni0.05 metal thin-film strain stripes. Compared with the photoelastic waveguides and photoelastic optoelectronic devices induced by W and SiO2 strain thin films, there are more important applications in the fabrication of planar optoelectronic devices using photoelastic waveguide structures induced by W0.95Ni0. 05 metal thin film strain stripes.
    
    
    
    
                出处
                
                    《红外与毫米波学报》
                        
                                SCIE
                                EI
                                CAS
                                CSCD
                                北大核心
                        
                    
                        2002年第z1期1-6,共6页
                    
                
                    Journal of Infrared and Millimeter Waves
     
            
                基金
                    国家自然科学基金(批准号69976003)资助项目
            
    
                关键词
                    WNi/半导体接触
                    光弹效应
                    光弹波导结构
                    平面型光弹光电子器件.
                
                        WNi/ semiconductor contact, photoelastic effect, photoelastic waveguide structures, planar phot oelastic optoelectronic devices.