摘要
文[6]于1962年首先引入了次对称矩阵的概念,文[1]于1989年又引入了方阵的次转置的定义,而文[2]将次转置的定义及其结论推广到一般的矩阵上,并且引入了次特征值,次特征向量及次正定的次对称矩阵的概念,讨论了次对称矩阵的对角化方法及次对称矩阵,次正定的次对称矩阵的一些性质。次对称矩阵在求解线性方程组的近似解及摄动问题上均有应用,而循环矩阵是一类典型的次对称矩阵。本文在文[2]的基础上,将次对称矩阵扩充到复数域上,引入了次Hermite矩阵,讨论了它的对角化问题和它的某些性质,以及一些应用。
Sub-symmetrical matrix is extended into complex field in this paper.Theideas of sub-Hermitian matrix and sub-positive-defined sub-Hermitian matrix are intro-duced.Diagonalization process as well as their characteristics is discussed and a result simi-lar to Hemitian matrix is obtained. As for its application,operator norm and F-norm of sub-Hermitian matrix are givenin terms of its sub-characteristic value. And then,several important matrix determinantinequalities of sub-positive-defined sub-Hermitian matrix...
出处
《河北大学学报(自然科学版)》
CAS
1994年第3期13-19,共7页
Journal of Hebei University(Natural Science Edition)