期刊文献+

基于MRI扩散加权成像和表观扩散系数的影像组学模型对甲状腺结节良恶性的鉴别诊断价值研究 被引量:3

Value of radiomics models based on MRI diffusion weighted imaging and apparent diffusion coefficient in differentiating benign and malignant thyroid nodules
原文传递
导出
摘要 目的探讨基于MRI扩散加权成像(DWI)和表观扩散系数(ADC)图像的影像组学模型鉴别诊断甲状腺结节良恶性的价值。方法横断面研究。回顾性分析2019年1月至2022年12月中国医学科学院肿瘤医院深圳医院行甲状腺MRI检查的140例患者的148个甲状腺结节(良性50个,恶性98个)的临床资料。以结节为研究单位,使用留出法将甲状腺结节按照7∶3的比例随机分成训练集和测试集。对DWI和ADC图像进行感兴趣区勾画及组学特征提取,在训练集中采用观察者间一致性分析、U检验、最小绝对收缩和选择算子算法、相关性分析进行特征筛选,使用支持向量机(SVM)、随机森林(RF)、K最近邻(KNN)和逻辑回归(LR)4个分类器对选取的特征构建模型,包括DWI模型、ADC模型和联合模型,并在测试集中对模型进行测试。以甲状腺结节病理结果为金标准,应用受试者工作特征(ROC)曲线评价影像组学模型鉴别诊断甲状腺结节良恶性的效能。结果本研究140例患者中,男40例,女100例,年龄(38.4±12.2)岁。经过特征筛选,11个DWI特征和11个ADC特征被用于构建模型。训练集中,基于同一分类器构建的不同模型间比较,联合模型的ROC曲线下面积(AUC)均高于相应的DWI模型和ADC模型。测试集中,SVM联合模型表现出最佳的模型预测效能[AUC为0.873(95%CI:0.740~0.954),准确度为75.6%,灵敏度为46.7%,特异度为90.0%,阳性预测值(PPV)为70.0%,阴性预测值(NPV)为77.1%],其AUC高于RF联合模型[AUC为0.836(95%CI:0.695~0.929),准确度为77.8%,灵敏度为40.0%,特异度为96.7%,PPV为85.7%,NPV为76.3%]、KNN联合模型[AUC为0.832(95%CI:0.691~0.927),准确度为77.8%,灵敏度为33.3%,特异度为100%,PPV为100%,NPV为75.0%]以及LR联合模型[AUC为0.813(95%CI:0.669~0.914),准确度为77.8%,灵敏度为60.0%,特异度为86.7%,PPV为69.2%,NPV为81.3%]。结论基于DWI和ADC图像特征的影像组学模型有助于鉴别诊断甲状腺结节良恶性,SVM联合模型的预测效能最佳。 Objective To investigate the value of radiomics models based on magnetic resonance imaging(MRI)diffusion weighted imaging(DWI)and apparent diffusion coefficient(ADC)maps in distinguishing benign and malignant thyroid nodules.Methods A cross-sectional study.Clinical data of 148 thyroid nodules(50 benign,98 malignant)from 140 patients who underwent thyroid MRI examination in Cancer Hospital&Shenzhen Hospital,Chinese Academy of Medical Sciences between January 2019 and December 2022 were retrospectively analyzed.The nodules were used as the study units,and a leave-one-out method was used to randomly divide the nodules into a training set and a test set at a 7∶3 ratio.Region of interest was segmented and radiomics features were extracted from the DWI and ADC images.In the training set,feature selection was performed using inter-observer agreement analysis,U-test,least absolute shrinkage and selection operator algorithm,and correlation analysis.Four classifiers,including support vector machine(SVM),random forest(RF),k-nearest neighbors(KNN)and logistic regression(LR)were used to build models with the selected features,including the DWI models,ADC models,and combined models.The models were independently tested in the test set.The performance of the radiomics models in distinguishing benign and malignant thyroid nodules was evaluated using the receiver operating characteristic(ROC)curve,with pathological results as the gold standard.Results Of the 140 patients,there were 40 males and 100 females,with a mean age of(38.4±12.2)years.After feature selection,11 DWI features and 11 ADC features were used to build the models.In the training set,the AUC values of the combined models were higher than those of the corresponding DWI and ADC models.In the test set,the SVM combined model showed the best predictive performance,with an AUC of 0.873(95%CI:0.740-0.954),accuracy of 75.6%,sensitivity of 46.7%,specificity of 90.0%,positive predictive value(PPV)of 70.0%and negative predictive value(NPV)of 77.1%,while the RF combined model had an AUC of 0.836(95%CI:0.695-0.929),accuracy of 77.8%,sensitivity of 40.0%,specificity of 96.7%,PPV of 85.7%and NPV of 76.3%,the KNN combined model had an AUC of 0.832(95%CI:0.691-0.927),accuracy of 77.8%,sensitivity of 33.3%,specificity of 100%,PPV of 100%and NPV of 75.0%,the LR combined model had an AUC of 0.813(95%CI:0.669-0.914),accuracy of 77.8%,sensitivity of 60.0%,specificity of 86.7%,PPV of 69.2%and NPV of 81.3%.Conclusions Radiomics models based on DWI and ADC image features can effectively distinguish benign and malignant thyroid nodules.The SVM combined model had the best prediction performance.
作者 徐海军 杨倩 何品 罗虹虹 邓文明 刘周 罗德红 Xu Haijun;Yang Qian;He Pin;Luo Honghong;Deng Wenming;Liu Zhou;Luo Dehong(Department of Radiology,National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital,Chinese Academy of Medical Sciences and Peking Union Medical College,Beijing 100021,China;Department of Radiology,National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital&Shenzhen Hospital,Chinese Academy of Medical Sciences and Peking Union Medical College,Shenzhen 518116,China)
出处 《中华医学杂志》 CAS CSCD 北大核心 2023年第41期3279-3286,共8页 National Medical Journal of China
基金 深圳市高水平医院建设专项经费(SZ2020ZD005,E01032100) 中国医学科学院肿瘤医院深圳医院院内科研课题经费
关键词 甲状腺结节 磁共振成像 影像组学 扩散加权成像 表观扩散系数 Thyroid nodule Magnetic resonance imaging Radiomics Diffusion weighted imaging Apparent diffusion coefficient
作者简介 通信作者:罗德红,Email:cjr.luodehong@vip.163.com
  • 相关文献

参考文献7

二级参考文献83

  • 1Shin JH, Han BK, Ko EY, et al. Differentiation of widely invasive and minimally invasive follicular thyroid carcinoma with sonography [J]. Eur J Radiol, 2010,74(3): 453-457.
  • 2Sun W, Lan X, Zhang H, et al. Risk Factors for Central Lymph Node Metastasis in CN0 Papillary Thyroid Carcinoma: A Systematic Review and Meta-Analysis [J]. PLoS One, 2015, 10(10): e0139021.
  • 3Zhang XL, Qian LX. Ultrasonic features of papillary thyroid and non [J]. Exp Ther Med, 2014 8(4): 1335-1339.
  • 4Brito JP, Gionfriddo MR, A1 Nofal A, et al. The accuracy of thyroid nodule ultrasound to predict thyroid cancer: systematic review and meta-analysis [J]. J Clin Endocrinol Metab, 2014, 99(4): 1253-1263.
  • 5Lee CY, Kim S J, Ko K_R, et al. Predictive factors for extrathyroidal extension of papillary thyroid carcinoma based on preoperative sonography [J]. J Ultrasound Med, 2014, 33(2): 231-238.
  • 6Moon W J, Jung SL, Lee JH, et al. Benign and malignant thyroid nodules: US differentiation--multicenter retrospective study [J]. Radiology, 2008, 247(3): 762-770.
  • 7Zhou L, Chen B, Zhao M, et al. Sonographic features of medullary thyroid carcinomas according to tumor size: comparison with papillary thyroid carcinomas [J]. J Ultrasound Med, 2015, 34(6): 1003-1009.
  • 8Haugen BR, Alexander EK, Bible KC, et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules andDifferentiated Thyroid Cancer [J]. Thyroid, 2016, 26(1): 1-133.
  • 9Falch C, Axt S, Scuffi B, et al. Rapid thyroid nodule growth is not a marker for well-differentiated thyroid cancer [J]. World J Surg Oncol, 2015, 13(1): 338.
  • 10Kim EK, Park CS, Chung WY, et al. New sonographic criteria for recommending fine-needle aspiration biopsy of nonpalpable solid nodules of the thyroid [J]. AJRAm J Roentgenol, 2002, 178(3): 687-691.

共引文献161

同被引文献43

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部