期刊文献+

Characterization and Identification of NPK Stress in Rice Using Terrestrial Hyperspectral Images 被引量:1

原文传递
导出
摘要 Due to nutrient stress,which is an important constraint to the development of the global agricultural sector,it is now vital to timely evaluate plant health.Remote sensing technology,especially hyperspectral imaging technology,has evolved from spectral response modes to pattern recognition and vegetation monitoring.This study established a hyperspectral library of 14 NPK(nitrogen,phosphorus,potassium)nutrient stress conditions in rice.The terrestrial hyperspectral camera(SPECIM-IQ)collected 420 rice stress images and extracted as well as analyzed representative spectral reflectance curves under 14 stress modes.The canopy spectral profile characteristics,vegetation index,and principal component analysis demonstrated the differences in rice under different nutrient stresses.A transformer-based deep learning network SHCFTT(SuperPCA-HybridSN-CBAM-Feature tokenization transformer)was established for identifying nutrient stress patterns from hyperspectral images while being compared with classic support vector machines,1D-CNN(1D-Convolutional Neural Network),and 3D-CNN.The total accuracy of the SHCFTT model under different modeling strategies and different years ranged from 93.92%to 100%,indicating the positive effect of the proposed method on improving the accuracy of identifying nutrient stress in rice.
出处 《Plant Phenomics》 SCIE EI CSCD 2024年第3期638-654,共17页 植物表型组学(英文)
基金 supported by China's National Key R&D Plan(2021YFD200060502) China's National Key R&D Plan(2018YFD0300105) China's National Key R&D Plan(2016YFD0300909).
作者简介 Address correspondence to:Jinfeng Wang,jinfeng.w@126.com;Address correspondence to:Zhentao Wang,15770085650@163.com
  • 相关文献

参考文献1

共引文献6

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部