期刊文献+

电池用环氧树脂/石墨烯复合材料热阻断性能研究

Study on the thermal blocking performance of epoxy resin/graphene materials for batteries
在线阅读 下载PDF
导出
摘要 锂电池的滥用导致热失控是造成电池安全事故的主要原因之一,也是亟须解决的问题。本文以E-51环氧树脂聚合物为基体,石墨烯纳米片为导电填料,聚酰胺为固化剂,制备了一种具有正温度系数(Positive Temperature Coefficient,PTC)的E-51环氧树脂/石墨烯复合材料,探讨了石墨烯含量、固化工艺对复合材料室温电阻率的影响,并研究了复合材料的可恢复性及对锂电池热阻断性能。结果表明,当石墨烯质量分数为15 wt%,固化温度为60℃,固化时间为3 h时,其室温表面电阻率为88Ω·cm,当测试温度升高至130℃时,复合材料的PTC强度达到1.6,并表现出可恢复性。将其应用在LiFePO_(4)电池中,在60℃测试温度下电池放电时间由70 min缩短至38 min,表现出优异的自激发热阻断现象。本研究有助于推动环氧树脂基PTC复合材料的应用,为解决电池因热失控而引发的安全事故提供借鉴意义。 The thermal runaway caused by the abuse of lithium batteries is one of the main reasons for battery safety accidents and a key issue that urgently needs to be addressed.In this article,E-51 epoxy resin/graphene composite with a positive temperature coefficient(PTC)was prepared by using the E-51 epoxy resin as the matrix,graphene nanosheets as the conductive fillers and polyamide as the curing agent,respectively.The effects of conductive filler graphene content and curing process on the room temperature resistivity of the composite material is investigated.Meanwhile,the recoverability and thermal blocking performance of the composite material for lithium batteries is also studied.The results showed that when the mass fraction of graphene in the composite material was 15 wt%,the curing temperature was 60℃,and the curing time was 3 hours,the surface resistivity at room temperature was 88Ω·cm for the E-51 epoxy rein/graphene composite.When the test temperature was raised to 130℃,the PTC strength of the composite material reached 1.6 and possessed recoverability.Applying the E-51 epoxy resin/graphene composite in the LiFePO_(4)batteries,the discharge time of the batteries was shortened from 70 min to 38 min at 60℃,which exhibiting excellent self-excited thermal blocking phenomenon.This study contributes to promoting the application of epoxy resin based PTC composite materials and provides a reference for solving safety accidents caused by thermal runaway in batteries.
作者 安长胜 欧齐翔 曹文静 徐晨 张昭 高志明 刘严强 AN Changsheng;OU Qixiang;CAO Wenjing;XU Cheng;ZHANG Zhao;GAO Zhiming;LIU Yanqiang(School of Materials Science and Engineering,Tianjin University,Tianjin 300350,China;School of Materials and Environmental Engineering,Changsha University,Changsha 410022,China;Zhejiang YUXI Corrosion Control Corporation Contact,Ningbo 315725,China;Department of Chemistry,Zhejiang University,Hangzhou 310058,China)
出处 《功能材料与器件学报》 CAS 2024年第5期247-253,共7页 Journal of Functional Materials and Devices
基金 国家青年科学基金项目(52204307)
关键词 环氧树脂 石墨烯 阻温特性 热阻断特性 epoxy resin graphene resistance-temperature characteristic thermal blocking characteristic
作者简介 安长胜(1987—),男,博士,讲师,主要研究方向为新能源材料与器件、功能材料(E-mail:z20190628@ccsu.edu.cn);通信作者:高志明(1970—),男,博士,教授,主要研究方向为表面工程(E-mail:gaozhiming@tju.edu.cn).
  • 相关文献

参考文献6

二级参考文献25

  • 1[3]Spotnitz R, Franklin J. Abuse behavior of high-power, lithium-ion cells[J]. J P S, 2003, 113: 81-100.
  • 2[4]Broussely M, Planchat J P, Rigobert G, et al. Lithium-ion batteries for electric vehicles: performances of 100 A·h cells[J]. J P S, 1997, 68: 8-12.
  • 3[5]MacNeil D D, Lu Zhonghua, Chen Zhaohui, et al. A comparison of the electrode/electrolyte reaction at elevated temperatures for various Li-ion battery cathodes[J]. J P S, 2002, 108: 8-14.
  • 4[8]Spalek J, Honig J M, Acqarone M, et al. Thermodynamic theory of metal-insulator transitions[J]. J Magnetism and Magnetic Mater, 1986, 54-57:1047-1048.
  • 5[9]Kokabi H R, Rapeaux M, Aymami J A, et al. Electrical characterization of PTC thermistor based on chromium doped vanadium sesquioxide[J]. Materials Science and Engineering, 1996, B38:80-89.
  • 6[11]Roseman R D. High temperature poling effects on conducting barium titanate ceramics[J]. J Ferroelectrics, 1998, 215: 31-45.
  • 7[12]Kulwicki B M. Ferroelectrics, diffusion potentials in BaTiO3 and the theory of PTC materials[J]. J Ferroelectrics, 1971, 1: 253-263.
  • 8Tsao K Y, Tsai C S, Huang C Y. Effect of argon plasma treatment on the PTC and NTC behaviors of HDPE/carbon black /aluminum hydroxide nanocomposites for over-voltage resistance positive temperature coefficient ( PTC ) [J]. Surface and Coatings Technology, 2010, 205(supplement 1): S279-S285.
  • 9Li Q, Siddaramaiah, Kim N H, et al. Positive temperature coefficient characteristic and structure of graphite nanofibers reinforced high density polyethylene/carbon black nanocomposites [J]. Engineering, 2009, 40(3): 218-224.
  • 10Rastegar S, Ranjbar Z. DC and AC electrical conductivity of electro- deposited carbon-black-epoxy composite films [ J ]. Progress in Organic Coatings, 2008, 63(1): 1-4.

共引文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部