摘要
Wolfiporia cocos(F. A. Wolf) has been praised as a food delicacy and medicine for centuries in China. Here, we present the genome and transcriptome of the Chinese strain CGMCC5.78 of W. cocos. High-confidence functional prediction was made for 9277 genes among the 10,908 total predicted gene models in the W. cocos genome. Up to 2838 differentially expressed genes(DEGs)were identified to be related to sclerotial development by comparing the transcriptomes of mycelial and sclerotial tissues. These DEGs are involved in mating processes, differentiation of fruiting body tissues, and metabolic pathways. A number of genes encoding enzymes and regulatory factors related to polysaccharide and triterpenoid production were strikingly regulated. A potential triterpenoid gene cluster including the signature lanosterol synthase(LSS) gene and its modified components were annotated. In addition, five nonribosomal peptide synthase(NRPS)-like gene clusters,eight polyketide synthase(PKS) gene clusters, and 15 terpene gene clusters were discovered in the genome. The differential expression of the velevt family proteins, transcription factors,carbohydrate-active enzymes, and signaling components indicated their essential roles in the regulation of fungal development and secondary metabolism in W. cocos. These genomic and transcriptomic resources will be valuable for further investigations of the molecular mechanisms controlling sclerotial formation and for its improved medicinal applications.
基金
supported by the CAMS Innovation Fund for Medical Sciences (CIFMS) (Grant No. 2016-I2M-3-016)
the National TCM Standardization Project (Grant No. ZY13ZH-C-JL-24)
funded by the French National Research Agency through the Laboratory of Excellence Advanced Research on the Biology of Tree and Forest Ecosystems (Grant No. ANR-11-LABX 0002 01)
Beijing Advanced Innovation Center for Tree Breeding by Molecular Design
Beijing Forestry University
作者简介
Corresponding authors:Shilin Chen,E-mail:slchen@icmm.ac.cn,ORCID:0000-0002-0449-236X;Corresponding authors:Jingyuan Song,E-mail:jysong@implad.ac.cn,ORCID:0000-0003-2733-0416;Corresponding authors:Francis Martin,E-mail:francis.martin@inra.fr,ORCID:0000-0002-4737-3715;Equal contribution:Hongmei Luo,ORCID:0000-0002-3403-7659;Equal contribution:Jun Qian,ORCID:0000-0001-5923-0538;Zhichao Xu,ORCID:0000-0003-1753-5602;Wanjing Liu,ORCID:0000-0002-6485-8319;Lei Xu,ORCID:0000-0002-4841-630X;Ying Li,ORCID:0000-0001-9560-2212;Jiang Xu,ORCID:0000-0002-1139-4063;Jianhong Zhang,ORCID:0000-0002-8394-1951;Xiaolan Xu,ORCID:0000-0001-8476-3643;Chang Liu,ORCID:0000-0003-3879-7302;Liu He,ORCID:0000-0003-3951-4132;Jianqin Li,ORCID:0000-0003-3792-1172;Chao Sun,ORCID:0000-0001-7096-5033