期刊文献+

电网基建施工现场安全实时管控系统研究与应用 被引量:2

Research and Application of Real-time Safety Management System for Power Grid Infrastructure Construction Site
在线阅读 下载PDF
导出
摘要 在电网基建施工现场,为进一步落实新安全生产法、加强现场作业管控,对作业班组管理实行事前、事中、事后全过程管控、把关,实时监督、指导施工班组人员现场施工,研究了一套输电线路施工现场安全实时管控系统。该系统通过360°旋转、自动聚焦等功能,可远距离观察作业现场局部细节。自系统上线运行以来,大大提高了对现场施工情况的监督管控力度,并无形中提高了现场施工人员的安全意识,大大节约了驱车到现场的时间成本及经济成本,有效解决了偏远地区施工现场监管盲区的问题。 In order to further implement the new production safety law and strengthen on-site operation control,the working group shall be controlled and checked in the whole process before,during and after the event.It is necessary to develop a real-time security control system for the transmission lines construction.Through 360°rotation,auto focus and other functions,the system can observe the local details of the work site remotely.Since the system went live,it has greatly improved the supervision and control of the on-site construction situation,which has improved the safety awareness of the construction personnel,greatly reduced the time and economic cost of driving to the scene,and effectively solved the problem of monitoring blind areas on construction sites in remote areas.
出处 《安徽电力》 2019年第3期24-27,共4页 Anhui Electric Power
关键词 电网基建 施工现场 安全实时管控 应用 power grid infrastructure construction site security real-time control application
作者简介 刘云飞(1971-),男,安徽桐城人,高级工程师,主要从事输变电工程施工技术管理工作;徐超峰(1979-),男,安徽涡阳人,高级工程师,主要从事软件和信息技术服务。
  • 相关文献

参考文献2

二级参考文献27

  • 1TURK M, ALEX P. Eigenfaces for recognition[J]. Journal of Cognitive Neuroscience, 1991, 3(2): 71-86.
  • 2SUN Y, WANG X, TANG X. Deep learning face representation from predicting 10000 classes[C]//CVPR '14: Proceedings of the 2014 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2014: 1891-1898.
  • 3HU J, LU J, TAN Y-P. Discriminative deep metric learning for face verification in the wild[C]//CVPR '14: Proceedings of the 2014 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2014: 1875-1882.
  • 4HUANG G, LEE H, LEARNED-MILLER E. Learning hierarchical representations for face verification with convolutional deep belief networks[C]//CVPR '12: Proceedings of the 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2012: 2518-2525.
  • 5ZHU Z, LUO P, WANG X, et al. Deep learning identity-preserving face space[C]//ICCV 2013: Proceedings of the 2013 IEEE International Conference on Computer Vision. Washington, DC: IEEE Computer Society, 2013: 113-120.
  • 6SUN Y, WANG X, TANG X. Hybrid deep learning for face verification[C]//ICCV 2013: Proceedings of the 2013 IEEE International Conference on Computer Vision. Washington, DC: IEEE Computer Society, 2013: 2013: 1489-1496.
  • 7TAIGMAN Y, YANG M, RANZATO M, et al. DeepFace: closing the gap to human-level performance in face verification[C]//CVPR '14: Proceedings of the 2014 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2014: 1701-1708.
  • 8SUN Y, CHEN Y, WANG X, et al. Deep learning face representation by joint identification-verification[C]//NIPS 2014: Advances in Neural Information Processing Systems 27. Cambridge, MA: MIT Press, 2014: 1988-1996.
  • 9HINTON G E, OSINDERO S, THE Y W. A fast learning algorithm for deep belief nets[J]. Neural Computation, 2006, 18(7): 1527-1554.
  • 10HINTON G E, SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786): 504-507.

共引文献21

同被引文献13

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部