期刊文献+

基于纹理和SVM的地面凝结现象观测方法研究

A Texture-based SVM Observation of Ground Condensation Phenomenon
在线阅读 下载PDF
导出
摘要 地面凝结现象传统观测方法为人工观测,存在观测时效性差和主观性强等问题,影响观测数据质量。通过图像处理技术识别天气现象是当前研究的热点,但是霜露容易受到温度和光照的影响而消失,霜露在图像中的分布特征容易受到干扰,提取特征难度较大,因此该方法在地面凝结现象识别率方面还有较大的提升空间。对此提出一种高清CCD拍照自动识别地面凝结现象的方案,首先提取图片的感兴趣区域,然后将感兴趣区域通过Canny边缘检测提取纹理特征等一系列处理,最终利用支持向量机将结霜、结露、干燥3种现象进行识别。这种方法不受光线影响,可以同时支持在白天和夜晚观测。通过和人工观测对比,最终综合识别准确率为86.5%。 The traditional observation method of ground condensation phenomenon is manual observation,which has problems such as poor observation timeliness and strong subjectivity,which affect the quality of observation data.Recognizing weather phenomena through image processing technology is a current popular trend,butdew and frost are easy to disappear due to temperature and light.The distribution of frost and dew in the image is disturbed easily.So,it is difficult to extract features.Therefore,this method still has more room for improvement in the recognition rate of ground condensation phenomena.This article introduces a high-definition CCD camerato automatically identify the ground condensation phenomenon.First,extract the interested region of the picture,then,extract the feature of the interested region by canny edge detection.Finally,identify the three phenomena of frost,dew,and dry by the Support Vector Machine.This method is not only unaffected by light,but also supports observation during the day and night.Compared with manual observation,the final comprehensive recognition accuracy rate is 86.5%.
作者 陈留 杨笔锋 谢欢 马尚昌 CHEN Liu;YANG Bifeng;XIE Huan;MA Shangchang(College of Electronical Engineering,Chengdu University of Information Technology,Chengdu 610225,China;The Key Laboratory of China Meteorological Administration,Chengdu 610225,China)
出处 《成都信息工程大学学报》 2022年第6期622-626,共5页 Journal of Chengdu University of Information Technology
关键词 边缘检测 纹理特征 支持向量机 图像识别 edge detection texture feature support vector machines image identification
  • 相关文献

参考文献10

二级参考文献86

  • 1王植,贺赛先.一种基于Canny理论的自适应边缘检测方法[J].中国图象图形学报(A辑),2004,9(8):957-962. 被引量:219
  • 2周宝荣.谈露的观测[J].贵州气象,2006,30(3):41-41. 被引量:3
  • 3Demigny D, Kamle T. A discrete expression of Canny's criteria for step edge detector performances evaluation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1997,19(6): 1199-1211.
  • 4Demigny D. Extension of Canny's discrete criteria to second derivative filters, towards a unified approach [A3] In : Proceedings of International Conference on Image Processing [C ]. Los Alamitos, CA, USA: IEEE, Computer SOC Press, 1998:520-524.
  • 5Worthington P L. Enhanced Canny edge detection using curvature consistency[A ]. In: Proceedings International Conference on Pattern Recognition[C]. Los Alamitos ,CA ,USA :IEEE,Computer SOC Press, 2002 : 596 -599.
  • 6Gonzalez C Rafael,Woods E Richard.数字图像处理(第二版)[M],北京:电子工业出版社,2003:463-474.
  • 7Canny J. A computational approach to edge detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1986,8(6) : 679- 698.
  • 8Demigny D, Lorca F G, Kessal L. Evaluation of edge detectors performances with a discrete expression of Canny's criteria[A].In:Proceedings of International Conference on Image Processing[C], Los Aiamitos, CA, USA: IEEE, Computer SOC Press,1995:169-172.
  • 9成都气象学院主编.气象学[M].北京:农业出版社,1979.
  • 10SHANK D B, HOOGENBOOM G, McCLENDON R W. Dewpoint temperature prediction using artificial neural networks[J]. Journal of Applied Meteorology and Climatology, 2008, 47(6):1757-1769.

共引文献314

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部