期刊文献+

电力杆塔模型特征点智能提取关键技术研究 被引量:5

Research on key technologies of model feature points intelligent extraction for power tower
原文传递
导出
摘要 针对电力杆塔无人机智能巡检手动选取特征点对专业要求高、效率低、点位命名不统一等问题,该文提出一种基于高密度点云与杆塔模型属性信息的特征点智能提取方法。首先将杆塔点云数据与杆塔模型属性信息通过模型名称建立联系,得到杆塔关键点,然后利用特征点预测技术得到特征点粗略位置,最后通过特征点智能提取技术得到特征点准确位置。基于4类杆塔模型的实验结果表明:该方法的特征点提取平均正确率在88.1%以上,大幅减少了人工干预,提高了提取效率,按顺序编码命名的特征点为任务规划带来了便捷。通过实践应用,平均效率比手动规划提高3.3倍,巡检照片满足技术要求,在实际电网巡检工程中得到很好的应用。 Aiming at the problems of high professional requirements,low efficiency and inconsistent feature points naming of manual selection of feature points in unmanned aerial vehicle(UAV)intelligent inspection of power tower.An intelligent extraction method of feature points based on high density point cloud data and tower model attribute information was proposed.Firstly,the tower point cloud data was connected with the tower model attribute information through the model name to obtain the tower key points,and then the rough position of the feature points was obtained by using the feature point prediction technology.Finally,the accurate position of feature points was obtained by feature point intelligent extraction technology.The experimental results based on four type tower models showed that the average accuracy of feature point extraction of this method was more than 88.1%,which greatly reduced manual intervention and improved the extraction efficiency.The feature points encoded and named in sequence brought convenience to task planning.Through practical application,the average efficiency was 3.3 times higher than that of manual planning in task planning,and the patrol photos met the technical requirements.This method has been well applied in the actual power tower inspection project.
作者 李昌柯 李英成 金芳芳 雒燕飞 孙一铭 LI Changke;LI Yingcheng;JIN Fangfang;LUO Yanfei;SUN Yiming(Chinese Academy of Surveying and Mapping,Beijing 100036,China;China TopRS Technology Co.,Ltd.,Beijing 100039,China;Key Laboratory for Aerial Remote Sensing Technology of Ministry of Natural Resources,Beijing 100039,China;Beijing Engineering Research Center of Low Altitude Remote Sensing Data Processing,Beijing 100039,China;Zhejiang Huayun Clean Energy Co.,Ltd.,Hangzhou 310002,China)
出处 《测绘科学》 CSCD 北大核心 2022年第11期162-169,共8页 Science of Surveying and Mapping
基金 地理信息输电线路专题数据规范项目(202132015)
关键词 激光雷达 电力杆塔 特征点预测 智能提取 任务规划 LiDAR power tower feature points prediction intelligent extraction task planning
作者简介 李昌柯(1996—),男,河南商丘人,硕士研究生,主要研究方向为点云智能提取。E-mail:lichangke1996@163.com;通信作者:雒燕飞,高级工程师,E-mail:luoyanfei2007@sina.com
  • 相关文献

参考文献9

二级参考文献88

共引文献242

同被引文献80

引证文献5

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部