期刊文献+

区间二型模糊神经网络遥感图像分割方法 被引量:1

Interval type-2 fuzzy neural network for remote sensing image segmentation
原文传递
导出
摘要 针对遥感图像分割领域的模糊性和不确定性问题,提出一种全新的遥感图像分割方法。融合了均值和方差模糊以增强模型鲁棒性,采用合页损失函数简化计算,并引入结合遗传算法和基于约束的优化算法的新优化算法,以提升模型性能和准确度。通过多组不同光谱和空间分辨率的遥感数据进行评估,计算了多个有效性指标,并进行详细比较分析。在高尔夫球场和海港地物类别分类实验中,相比于先进的区间二型模糊神经网络等方法,整体准确率平均提高了17.05%和6.5%。文中方法有效解决了遥感图像分割中的模糊性和不确定性问题,为遥感图像分割领域提供一个新的研究思路。 This study is dedicated to tackling the fuzziness and uncertainty inherent in remote sensing image segmentation,presenting a novel approach for the task.The method integrates mean and variance fuzziness to enhance the model's robustness,employs a hinge loss function to simplify computations,and introduces a new optimization algorithm that combines genetic algorithms with constraint-based optimization techniques to boost model performance and accuracy.The evaluation was conducted using multiple sets of remote sensing data with varying spectral and spatial resolutions,calculating several validity indicators for detailed comparative analysis.In experiments involving the classification of golf courses and harbor features,the overall accuracy improved by an average of 17.05%and 6.5%,respectively,compared to advanced methods such as interval type-2 fuzzy neural networks.This approach effectively addresses the fuzziness and uncertainty in remote sensing image segmentation,paving the way for new research avenues in the field.
作者 王春艳 金鹏 桂琪皓 WANG Chunyan;JIN Peng;GUI Qihao(School of Software,Liaoning Technical University,Liaoning 125105,China)
出处 《测绘科学》 CSCD 北大核心 2024年第5期84-98,共15页 Science of Surveying and Mapping
基金 国家自然科学基金-青年科学基金项目(41801368) 辽宁省教育厅基本科研项目(青年项目)(LJKOZ2021154)
关键词 遥感图像分割 模糊性 不确定性 区间二型模糊神经网络 地物类别分类 remote sensing image segmentation fuzziness uncertainty interval type-2 fuzzy neural network land cover classification
作者简介 王春艳(1981—),女,辽宁阜新人,副教授,博士,主要研究方向为遥感信息识别与提取。E-mail:wangchunyan@lntu.edu.cn;通信作者:金鹏,硕士研究生,E-mail:2396091297@qq.com
  • 相关文献

参考文献13

二级参考文献94

  • 1万银,刘丁,任俊超,刘聪聪.基于栈式自编码网络的直拉硅单晶生长过程V/G软测量建模[J].仪器仪表学报,2020(10):277-286. 被引量:2
  • 2李德仁.利用遥感影像进行变化检测[J].武汉大学学报(信息科学版),2003,28(S1):7-12. 被引量:240
  • 3杨炳儒,李晋宏,宋威,李欣.面向复杂系统的知识发现过程模型KD(D&K)及其应用[J].自动化学报,2007,33(2):151-155. 被引量:10
  • 4Bazi Y, Melgani F and A1-Sharari H D. 2010. Unsupervised change detection in multispectral remotely sensed imagery with level set methods. IEEE Transactions on Geoscience and Remote Sensing, 48 (8) : 3178 -3187.
  • 5Blaschke T. 2010. Object based image analysis for remote sensing. ISPRS Journal of Photogrammetry and Remote Sensing, 65 ( 1 ) : 2 - 16.
  • 6Bovolo F. 2009. A multilevel parcel-based approach to change detection in very high resolution multitemporal images. IEEE Geoscience and Remote Sensing Letters, 6 ( 1 ) : 33 - 37.
  • 7Bovolo F and Bruzzone L. 2007. A theoretical framework for unsuper- vised change detection based on change vector analysis in the polar domain. IEEE Transactions on Geoscience and Remote Sensing, 45 ( 1 ) : 218 - 236.
  • 8Bruzzone L and Carlin L. 2006. A multilevel context-based system for classification of very high spatial resolution images. IEEE Transac- tions on Geoscience and Remote sensing, 44 (9): 2587 -2600.
  • 9Bruzzone L and Prieto D F. 2000. Automatic analysis of the difference image for unsupervised change detection. IEEE Transaetions on Geoscience and Remote Sensing, 38(3) : 1171 -1182.
  • 10Bruzzone L and Prieto D F. 2002. An adaptive semiparametric and con- text-based approach to unsupervised change detection in multitempo- ral remote-sensing images. IEEE Transactions on Image Process, 11 (4) : 452 - 466.

共引文献365

同被引文献4

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部