期刊文献+

改进的自适应遗传算法支持下点云与BIM模型配准 被引量:6

Point cloud and BIM model registration based on improved adaptive genetic algorithm
在线阅读 下载PDF
导出
摘要 在钢结构数字化检测中,点云与设计模型的配准是进行数字化检测的关键步骤,配准的精确度决定了检测分析的准确度。传统配准方法一般先进行粗配准再进行精确配准,计算量大且收敛速度缓慢。针对精确配准存在的问题,本文提出了基于改进的自适应遗传算法用于点云与设计模型的配准方法,自适应地调整交叉概率与变异概率的执行顺序及概率值的大小,提高了种群的多样性及收敛速度。试验证明,改进后的自适应遗传算法极大地提高了点云与模型配准精度和收敛速度。 Registration of point cloud and design model is a key step in digital detection of steel structures.The traditional registration method is computationally intensive and slow in convergence. Aiming at accurate registration,an improved adaptive genetic algorithm is proposed for the registration method of point cloud and design model,adaptively adjust the execution order of cross probability and mutation probability and the magnitude ’ of probability value,and improve the diversity of population and convergence speed.Experiments show that the improved adaptive genetic algorithm greatly improves the accuracy and convergence speed of point cloud and model registration.
作者 李国远 王健 刘秀涵 孙文潇 LI Guoyuan;WANG Jian;LIU Xiuhan;SUN Wenxiao(College of Geomatics,Shandong University of Science and Technology,Qingdao 266590,China;Beijing Mag Tianhong Technology Development Co.,Ltd.,Beijing 100089,China)
出处 《测绘通报》 CSCD 北大核心 2020年第2期160-162,共3页 Bulletin of Surveying and Mapping
基金 山东省科学基金(ZR2019PD016) 山东科技大学研究生科技创新项目(SDKDYC190304).
关键词 点云 BIM模型 配准 自适应遗传算法 point cloud BIM model registration improved adaptive genetic algorithm
作者简介 李国远(1991—),男,硕士,主要研究方向为三维激光扫描仪及应用。E-mail:395651423@qq.com;通信作者:王健。E-mail:wangj@sdust.edu.cn
  • 相关文献

参考文献1

二级参考文献15

  • 1杨蕊红,潘泉,程咏梅.三维飞机目标识别的一种新方法[J].计算机仿真,2006,23(6):82-84. 被引量:4
  • 2孙剑峰,李琦,陆威,王骐.基于数字信号处理器的激光成像雷达目标识别算法实现[J].中国激光,2006,33(11):1467-1471. 被引量:15
  • 3Mashor M Y, Osman M K, Arshad M R. 3D Object Recog nition Using 2D Moments and HMLP Network[C]//Proc of the Int'l Conf on Computer Graphics, Imaging and Visualization (CGIV'04), 2004,2178 :04-08.
  • 4Vasile A N, Marino R M. Pose-Independent Automatic Target Detection and Recognition Using 3D Laser Radar Imagery [J].Lincoln LaboratoryJournal, 2005, 15(1) :61-78.
  • 5Mahalanobis A, Nevel A J V. Performance of Multidimen sional Algorithms for Target Detection in LADAR Imagery [C]//Proc of SPIE on Algorithms and Systems for Optical Information Processing, 2002, 4789:134- 147.
  • 6Gronwall C, Chevalier T, Persson A, et al. Methods for Recognition of Natural and Man-Made Objects Using Laser Radar Data[C]//Proc of SPIE on Laser Radar Technology and Applications IX, 2004, 5412:310-320.
  • 7Gronwall C, Gustafsson F, Millnert M, et al. Ground Target Recognition Using Rectangle Estimation [J ]. IEEE2 Trans on Image Processing, 2006, 15(11):3401- 3409.
  • 8Gronwall C, Andersson P, Gustafsson F, et al. I.east Squares Fitting of Articulated Objects[C] // Proc of the 2005 IEEE Computer Society Conf on Computer Vision and Pattern Recognition, 2005, 6919:05- 09.
  • 9Neulista J, Armbruster W. Segmentation, Classification, and Pose Estimation of Military Vehicles in Low Resolution Laser Radar Images[C]//Proc of SPIE on Laser Rada rTechnology and Applications X, 2005, 5791:218 225.
  • 10Besl J, Mckay D. A Method for Registration of 3-D Shapes[J].IEEE Trans on Pattern Anaylysis and Machine Intelligence, 1992,14(2) :239 256.

共引文献2

同被引文献71

引证文献6

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部