摘要
针对高分辨率遥感影像提出了一种基于神经网络的高效的机场和飞机目标检测方法,并制作了机场和飞机两类遥感影像数据集。首先对大幅遥感影像预处理,进行显著性检测和LSD(line segment detector)直线检测,通过对平行直线的筛选和聚类计算直线概率图,得到机场目标候选区域。然后,利用圆周频率滤波方法进一步提取出飞机的候选区域,最后利用深度学习模型定位飞机目标,实现了一体化的检测流程,检测准确率高达99%。
This paper proposes an efficient method for airplane and airport detection in high-resolution remote sensing images based on a deep learning algorithm.Firstly,it pre-processes large scale remote sensing images secondly,it utilizes salience detection and LSD(line segment detector)method to get airport candidate regions through linear probability graph,parallel linear filtering and clustering.Thirdly,it takes advantage of CFF(circle-frequency filter)localizing airplane regions,and finally,use CNN(convolutional neural network)module to get the accurate position of each airplane and combines airport detection with airplane detection to an integrated system.The results indicate that precision of our proposed method can reach to 99%.
作者
刘媛
姚剑
冯辰
LIU Yuan;YAO Jian;FENG Chen(School of Remote Sensing and Information Engineering,Wuhan University,Wuhan 430079,China)
出处
《测绘地理信息》
2020年第1期95-100,共6页
Journal of Geomatics
基金
国家自然科学基金(41571436).
关键词
高分辨率遥感影像
显著性
深度学习
飞机检测
直线概率图
high-resolution remote sensing images
salience
deep learning
airplane detection
linear probability graph
作者简介
第一作者:刘媛,硕士生,主要研究方向为目标检测、深度学习等。E-mail:liuyuan2011@whu.edu.cn;通讯作者:姚剑,博士,教授,主要研究方向为计算机视觉,遥感图像处理等。E-mail:jian.yao@whu.edu.cn